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a b s t r a c t 

Fault-Detection (FD) is essential to ensure the performance of solar thermal systems. However, manually analyzing 

the system can be time-consuming, error-prone, and requires extensive domain knowledge. On the other hand, 

existing FD algorithms are often too complicated to set up, limited to specific system layouts, or have only limited 

fault coverage. Hence, a new FD algorithm called Fault-Detective is presented in this paper, which is purely data- 

driven and can be applied to a wide range of system layouts with minimal configuration effort. It automatically 

identifies correlated sensors and models their behavior using Random-Forest-Regression. Faults are then detected 

by comparing predicted and measured values. 

The algorithm is tested using data from three large-scale solar thermal systems to evaluate its applicabil- 

ity and performance. The results are compared to manual fault detection performed by a domain expert. The 

evaluation shows that Fault-Detective can successfully identify correlated sensors and model their behavior well, 

resulting in coefficient-of-determination scores between R 2 = 0.91 and R 2 = 1.00. In addition, all faults detected by 

the domain experts were correctly spotted by Fault-Detective. The algorithm even identified some faults that the 

experts missed. However, the use of Fault-Detective is limited by the low precision score of 30% when monitoring 

temperature sensors. The reason for this is a high number of false alarms raised due to anomalies (e.g., consecu- 

tive days with bad weather) instead of faults. Nevertheless, the algorithm shows promising results for monitoring 

the thermal power of the systems, with an average precision score of 91%. 
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. Introduction 

Although heat accounts for approximately 50% of the global energy

emand, its production is still primarily dominated by fossil fuels [27] .

ence, renewable alternatives are desperately needed to reduce carbon

missions and reach the climate goals. One technology that may play

 vital role in this process is solar thermal energy, which can provide

enewable heat at stable prices. Therefore, more and more solar thermal

ystems have been installed in recent decades [27] . However, reliable

onitoring is needed to ensure the performance of these systems over

heir long lifetime of around 25 years. 

To do so, plant operators frequently analyze the monitoring data to

heck for any unusual behavior and react to faults quickly. However,

ith an increasing number of sensors and systems that need to be mon-

tored, it is not easy to perform this task manually. For example, the

atasets used within this work contain about 100 different sensors per

lant that need to be checked by the monitoring personnel. This as-

essment must be done frequently and fast to spot problems in time
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hile keeping the monitoring affordable. However, considerable effort

s needed to interpret the complex (nonlinear, time-dependent, multi-

ariate) solar thermal data. Hence, manually performing monitoring can

e time-consuming, error-prone (as some faults might be missed out),

nd requires extensive knowledge about the system. As a result, there

s a high potential for automatic fault detection approaches to support

he monitoring personnel and speed up their work. 

The topic of fault detection (FD) has been studied for several decades.

ome FD algorithms for solar thermal applications have been intro-

uced, as summarized by [8] and more recently by [12] . However, these

xisting methods often lack at least one of the following attributes (see

ection 2 for a more detailed analysis): 

lexibility: Solar thermal systems are often explicitly designed to meet

he needs of their customers, which leads to a wide range of unique

ystem layouts. Thus, FD algorithms must also be very flexible to be

pplied to a multiplicity of different systems. However, many methods

equire specific measurement devices or monitoring conditions or are

pecifically designed for one system only. 
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Fig. 1. Comparison of related work for Fault- 

Detection and Diagnosis for solar thermal sys- 

tems. Each work is categorized by the type 

of FDD approach based on [47] and rated 

in terms of Flexibility, Easy Configuration, High 

Fault-Coverage, and Extensive Validation based 

on the authors’ opinions. 
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T  
asy-Configuration: It is not always easy to integrate FD methods into

he active monitoring of a system. For example, it might be required to

dapt the algorithm to a particular system design, set hyperparameters

orrectly, or perform simulations beforehand. This setup typically re-

uires detailed knowledge about the system, system control, and fault

etection method. As a result, some algorithms might require too much

ime and effort to integrate them into monitoring. 

igh fault-coverage: In addition, algorithms must be able to detect

aults both reliably and fast. However, some methods are too inaccu-

ate such that faults are discovered too late or only allow for detecting

ome particular faults. On the other hand, false positives also need to be

revented, as false alarms may generate considerable overhead for the

onitoring personnel. 

xtensive validation: Finally, some fault detection methods are only

alidated using simulation data. For example, validation data might

et created by modeling components in “faulty ” and “fault-free ” states.

owever, this does not guarantee that the algorithm will work flawlessly

ith actual measurement data. That is because measurement uncertain-

ies and unmodeled influences are not considered and might introduce

alse alarms. 

A promising attempt to deal with these issues is to use artificial

ntelligence. Using machine learning techniques, required information

an be extracted automatically from the available sensor data, and al-

orithms can be trained to model the system’s behavior. Hence, this

ork proposes a new FD algorithm called Fault-Detective. Based on its

urely data-driven approach, it can be applied to any system and re-

uires only minimal configuration. It uses Random-Forest-Regression to

dentify the nonlinear relationships between sensors and models their

ehavior. Faults can be detected by comparing the predicted values with

ew measurement data - raising alarms if the difference exceeds a con-

dence threshold. The algorithm can be applied without knowing the

tructure of the plant or choosing any sensors by hand, which makes

t very flexible and ensures an easy configuration . Since the algorithm

dapts itself based on historical data, continuously updated by the latest

easurement, it can achieve a high fault coverage . Finally, the algorithm

s extensively validated with measurement data from three large-scale

olar thermal plants, allowing an in-depth analysis of Fault-Detective ’s

esults. 
2 
The main contributions of this work are thus (1) a novel algorithm

alled Fault Detective, which is based on artificial intelligence with a

ocus on being flexible and easy to configure to be widely applicable,

nd (2) its extensive evaluation with measurements of three solar thermal

ystems to quantify the prediction accuracy and the quality of the fault

etection. 

The paper is structured as follows: Section 2 lists related work and

iscusses the advantages and disadvantages of existing fault-detection

ethods compared to Fault-Detective . Section 3 presents the proposed

lgorithm and describes how it can be applied to a new system. Next,

ection 4 deals with the evaluation method, explaining how the mea-

urement data is used to test the algorithm. Section 5 presents the evalu-

tion results. It shows which sensors were identified to model the system

ehavior, analyses the prediction accuracy, and compares the algorithm

ith manual fault detection. Finally, the conclusion is given in Section 6 ,

nd the proposed work is discussed in Section 7 . 

. Related work 

This section lists related work on Fault Detection and Diagnosis

FDD) for solar thermal systems. A good overview of existing FDD meth-

ds is provided by [8] and more recently by [12] . The following dis-

usses the advantages and disadvantages of the methods to show how

ault-Detective might improve the current status quo. For clarity, related

ork is grouped based on the type of fault-detection approach, as de-

ned by [47] . Fig. 1 contains a summary of the discussion and a rating

f each method based on the authors’ personal opinions in terms of the

esired attributes described in the Introduction: Flexibility, Easy Config-

ration, High Fault-Coverage, and Extensive Validation . 

.1. Expert systems 

Expert system methods try to utilize the domain knowledge of solar

hermal experts and mimic how the expert would detect and diagnose

aults. Often, this results in if-then-else rules that are implemented as

lgorithms. 

One research project that uses this approach is IP-Solar [ 11 , 21 , 29 ].

hey first performed an FMEA (failure mode and effects analysis) to de-
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1 This method is listed as Identification-based algorithm by [12] . In contrast, 

we interpret it as Parity-Space method as it uses domain-knowledge in the form 

of mathematical functions (i.e., simulation models) to compare the design com- 

ponent parameters to measured ones. 
ermine faults that often occur at solar thermal systems. Next, domain

xperts were asked to find rules to detect and diagnose these individual

aults based on their experience. Finally, algorithms were implemented

n a monitoring tool to detect the faults automatically as soon as new

ata gets available. The same idea has also been applied in the follow-up

roject Methodiqa [30] and by Sun et al. [43] , the FUKS project [2] and

he InSun project [34] . In addition, the University of Kassel and their re-

earch projects FeDet [ 15 , 25 , 42 ] and Solar-Check [ 16 , 39 , 41 ] deal with

xpert systems as well. 

The considerable advantage of expert-system methods is that their

esults are easy to understand, and faults are often directly diagnosed.

n addition, the calculations are typically simple enough to be imple-

ented on PLC (programmable logic control) units and do not require

xtensive computational power. 

However, one disadvantage is that algorithms are tailored to specific

aults. Hence, many algorithms must be developed to cover all critical

aults. Consequently, this also means that each algorithm must be con-

gured for each plant, which can be time-consuming. As a result, many

rojects focus on a flexible configuration to speed up the process. For

xample, [11] provide templates to let users compose the hydraulic lay-

ut of the system and assign algorithms accordingly. Similarly, [25] use

tandardized sensor names, while [ 15 , 16 ] use a graph-based approach

o represent the position of sensors in the system and assign them to

lgorithms automatically. Nevertheless, experts must still provide many

ecessary parameters and configure the correct hydraulic setup. 

In addition, [41] report that many false-positive alarms are gener-

ted by the existing algorithms if tested on many systems. They ar-

ue that some operating conditions were not considered during algo-

ithm development and that further development is needed to make al-

orithms more stable and flexible [41] . Instead, Fault-Detective ’s data-

riven approach might allow it to automatically model all relevant op-

rating conditions without requiring a resource-intensive setup. 

.2. Parity space methods 

Parity-Space methods use physically-derived models to describe the

ault-free behavior of solar thermal systems. By using these mathemati-

al models, estimations for sensor values can be calculated. If the differ-

nce between estimated values (i.e., expected behavior) and measured

alues (i.e., actual behavior) is too high, this thus indicates a fault. 

For example, [9] use the simulation software TRNSYS to model the

hole solar thermal system. Using measurement data, the model can es-

imate the solar yield of the corresponding timeframe. An alarm is raised

f the measured solar yield is too low compared to the estimated one.

he authors show that the algorithm can detect both immediate faults

e.g., stagnation) and degradation faults (e.g., small leakages). However,

ot much information about the source of the fault can be provided,

eaving the fault diagnosis to the user. Comparing the simulation data

nd crosschecking with measurement data, however, may help pinpoint

aults to components. The drawback of the method is that it requires a

alid TRNSYS model, which in turn needs detailed knowledge about the

imulation software, the solar thermal system, and its system control. 

In contrast, the ISFH Input-Output Controller method [32] focuses

ainly on the solar circuit and requires less simulation experience. It

ses the collector Keymark equation from the EN/ISO 9806 to model

he collector performance and also includes estimates for losses through

torage and pipes. Again, estimated values for the solar yield are com-

ared to measured ones. In contrast to a TRNSYS simulation, the models

sed in this method are more straightforward and can even be integrated

nto system control units. The authors report that the yield estimations

ave an accuracy of 10%. Hence, severe faults can be detected well,

hile problems with less influence on the solar yield stay undetected.

part from that, the method can only detect faults in the solar circuit

nd cannot pinpoint the location of the fault. 

The Performance Check [ 10 , 28 , 46 ] also uses the collector Keymark

quation but focuses solely on the collectors. Hence, the influences of
3 
eat storage and pipes are not considered explicitly, which makes the

alculations more straightforward. To improve the accuracy of the re-

ults, estimates are only provided if certain operating conditions are

et. The method is excellent for monitoring solar collectors and check-

ng guarantees between the collector manufacturer and the designer.

owever, its use for fault detection is limited as it only focuses on the

ollector. In contrast, faults at other system parts cannot be detected. In

ddition, the required operating conditions might not be met for a large

ortion of the year. 

The D-CAT (Dynamic Collector Array Test) method implemented by

31] is another method focusing on the solar circuit. In contrast to the

erformance Check, it applies a more detailed model for the collectors,

hich can be used with fewer restrictions on the operating conditions.

ompared to the Performance check, their results are more accurate and

ive more insights into faults. However, setting up the algorithm is much

ore involved and requires implementing a new D-CAT model for each

ew system. 

The in situ short-term test method (ISTT) 1 developed by [3] primar-

ly aims at checking collector guarantees but can also be used for fault

etection. The method first requires a simulation model of the solar ther-

al system (e.g., TRNSYS) to be set up. Next, a sensitivity analysis is

erformed for each component parameter used in the model. The pa-

ameters that strongly influence the simulated solar yield are then fitted

ith measurement data using the simulation model. As the last step,

 new simulation is carried out using design conditions but with the

tted component parameters. The results are than compared with the

nitial guaranteed solar yield. For fault-detection, however, it might be

ore interesting to look for high changes in the component parameters,

hich might indicate faults or degradations (e.g., by reduced collector

eymark parameters). Unfortunately, the method has not been tested

s FDD method to the best of the authors knowledge. In addition, the

ethod requires a TRNSYS simulation model to be set up beforehand. 

Another example of a Parity-Space method is the FSC-based ap-

roach studied by [ 15 , 38–40 ], which was analyzed as part of the Solar-

heck project. It utilizes an empirical correlation between fractional so-

ar consumption (FSC) and fractional auxiliary energy savings (f_save).

s [26] showed, the correlation can be modeled using a polynomial

unction. If measured values for the f_save lie outside the confidence

argin, it indicates that the solar thermal system does not work as ex-

ected. However, the authors note that one year of data is needed to

ompute the required values, which limits the response time of the algo-

ithm. In addition, faults can only be detected if performance drops more

han 11% [40] . Unfortunately, the method has not yet been successfully

ested on operating data. Instead, experiments with actual measurement

ata did not show clear evidence that the method works as expected

39] . 

Most parity-space methods above unfortunately focus on a subpart of

he system and hence do not provide a full fault coverage of the system.

n addition, the methods often require setting many parameters or even

reating simulation models beforehand. Instead, Fault-Detective tries to

ather all required information based on the data and is not restricted

o a particular component of the system. 

.3. Identification-based methods 

Identification-based methods are very similar to the Parity-Space

ethods in that they provide predicted values (assuming fault-free op-

ration) that are compared to measurement ones. The difference is that

he models are learned based on measurement data rather than derived

rom mathematical formulas by domain experts. 
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For example, [13] model the yield of a solar parabolic-through col-

ector field using an Artificial Neuronal Network (ANN). As input, they

se the pressure difference, volume flow, and temperature difference of

he collectors. The data for training and validation is acquired using a

est rig that emulates the behavior of a solar thermal system. Faults are

nduced experimentally by altering the system control of the test rig.

sing this data, fault detection is done by comparing values predicted

y the ANN with measured values for the power. In addition, they also

ntroduce a rule-based (expert system) analysis that classifies/diagnoses

he faults. The downside of the method is that the input features and pa-

ameters of the ANN were derived by expert knowledge and trial and

rror. This means that it cannot be used directly for different systems.

imilarly, adaptions are needed to the rule-based diagnosis if the algo-

ithm is applied to a new system. 

Similarly, [ 23 , 24 ] use ANNs to learn and predict the temperatures

t two solar water heating systems in Cyprus and France. The behav-

or of sensors at multiple locations of the system is modeled using data

rom TRNSYS simulations. After training, the ANNs are supplied with

easurement data from the two plants. Instead of directly comparing

easured and predicted values, derived data points are calculated and

ompared (e.g., the temperature increase in the collector). This choice

as made to ease the interpretation of the results. The diagnosis module

hen alarms the user if a high deviation between predicted and measured

ata is detected for more than five consecutive timesteps. The algorithm

s validated using TRNSYS simulations and varying system parameters

o mimic fault-induced system behavior. The results show excellent per-

ormance of the ANN in detecting faults. [45] use a nonlinear autore-

ressive (NARX) neuronal network for detecting faults. In contrast to

ypical ANNs, this structure allows using the previous timestamps of the

redicted values, which typically increases the modeling accuracy of

ime-series data. The authors test different training strategies and pro-

ide a method to automatically configure the correct number of neurons

n each layer. The fault detection works similarly to Kalogriou et al. by

redicting the measurement values of the system and comparing the pre-

ictions with actual measured values. The algorithm is trained and val-

dated on simulated data using TRNSYS. The method’s success is shown

y the example of a pump failure simulation using a fault-induced TRN-

YS model. 

Correa Jullian et al. [6] compare more sophisticated ANN models to

etect faults. The analyzed architectures include long-short-term mem-

ry (LSTM) networks, recurrent neuronal networks (RNN), and deep

ayer neuronal networks (DNN), which are all reported to work very

ell with time-series data. For testing, data has been simulated using a

ault-free and a fault-induced TRNSYS model for a solar thermal system

n Chile. The results show excellent coefficient-of-determination scores

f R 

2 = 0.99 and higher, with the best results for the LSTM. On the other

and, fault detection proved to be more challenging, as many false pos-

tives were reported. As noted by the authors, validation with actual

easurement data is missing yet. 

A slightly different identification-based 2 approach is the spectral

ethod developed by [ 17 , 36 ]. They measure the temperature of the

ollector flow and analyze its temperature change every time the pump

tarts its operation. The main idea is that this signal contains informa-

ion about how the heat is distributed inside the collector. Thus, faults

ike dust on the collectors or degrading collector performance can be

dentified. By performing this analysis, the temperature change of “typ-

cal ” plant operation is determined using measurement data of the sys-

em. The signals are converted to the frequency domain using Fourier-

ransformations and average values for each frequency are calculated.

aults are then detected by applying the same transformation to new
2 Faure et al. [12] interpret this method as Classification method. However, 

he spectral method does not allow to label/classify detected faults, but only 

ompares the measured spectral signal with the signal during fault-free opera- 

ion. Hence, we regard it as Identification-based method. 

t  

l  

s  

p  

w  

c  

4 
ata and checking if the frequency spectrum is similar to reference val-

es in “typical ” system operation. The algorithm did well in correctly

etecting covered collector panels and differences in pump speed set-

oints. However, the author notes that only some faults can be detected

ith this method. In addition, the algorithm is more effective in de-

ecting (long-term) degradation instead of (short-term) immediate faults

nd focuses only on the collectors. The required data logging rate of one

easurement per second and the required 300 days of training data fur-

her complicate the configuration and flexibility of the algorithm. 

As Fault-Detective belongs to the same type of FDD method, it shares

any similarities with the approaches above. Especially the work of

24] highly influenced this work. However, the downside of most meth-

ds is that TRNSYS models are involved in training the ANNs. While

his offers the opportunity to detect faults present at the solar thermal

ystem directly after commission, it requires considerable knowledge

nd expertise to set up these models. Additionally, most authors did not

ave access to actual monitoring data to validate their approaches in

eal-life environments. The only exception is [17] , which, however, can

nly detect a small section of faults and mainly focuses on long-term

egradation. 

.4. Classification 

This type of FD method also uses historical data to detect faults. How-

ver, the main difference to the Identification-based methods is that the

lassification-based methods directly diagnose the fault. For example,

hese methods typically return the probability that one or multiple faults

re present at a system at a given time. 

One example is provided by [22] , who apply Support-Vector-

achines (SVMs) and Demster-Shafer (DS) evidence theory. Their goal

s to detect faults at a solar water heating test lab located in Beijing,

hina. In the first step, the measurement data is transformed using var-

ous preprocessing techniques relying on wavelet transforms to create

 rich feature set. Next, SVMs are applied to isolate specific faults. The

raining is done by experimentally introducing faults to the system and

sing the corresponding measurement data to fit the support vector ma-

hines. In the last step, evidence theory is used to combine the indi-

idual predictions to make the final decision of whether a specific fault

ccurred. The results show that the algorithm works well, with a high

ault-detection accuracy of above 90%. Unfortunately, the method re-

uires that measurement data is available for each fault that should be

etected. Hence, each fault must be observed and labeled at least once

efore the algorithm can be trained. This process must likely be done

or each new solar thermal system, as the measurement data might not

e affected similarly for different plants. This requirement considerably

ncreases the complexity of the configuration. 

Another classification-based method for solar thermal systems is pro-

ided by [20] . They apply an Adaptive-Resonance-Theory (ART) neu-

onal network with hierarchical layers (h-ART). In principle, it allows

he users to group similar operating states of the system. If new data

rrives that does not fit into any existing group, a new one is added

o the h-ART network. Hence, such data is regarded as untypical and

nterpreted as a fault. As a further advantage, the h-ART automatically

rovides a severity for the fault as a direct consequence of the hierar-

hical layout of the algorithm. The approach is tested using the moni-

oring data of a solar hot water test lab. Faults are manually introduced

o the system by covering the collectors, simulating pump failure with

ystem control, and similar methods. The faults could be detected very

ell, with few false positives. The only disadvantage of the model is that

ultiple years of data are needed to train the neuronal network. Hence,

he authors suggest and use data from a TRNSYS simulation of the test

ab to create the training data. However, the authors note that creating

uch detailed simulation models requires detailed knowledge and ex-

ertise. In addition, it is not reported how well the algorithm can deal

ith adaptions in system control or exchanges of components. Drastic

hanges in the operation might create a new group in a low hierarchy
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Fig. 2. Flowchart showing the concept of 

Fault-Detective. 
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ayer, rendering the other groups ineffective. As a result, the entire hier-

rchy may need to be built again, leading to many false alarms. Hence,

rastic changes may require retraining the algorithm with an updated

RNSYS model. 

More recently, [37] developed an ANN-based classification method

argeted at concentrating solar power plants. In contrast to the

dentification-based algorithms, their network is trained to return the

robability of specific faults. In addition to the ANN, they also propose

wo additional checks that can further isolate the location of the fault.

n total, their method can distinguish between fault-free operation and

hree distinct kinds of faults related to the volume flow, heat losses, or

he optical efficiency of the collectors. To train and test the method, the

uthors use simulation data of the ACUREX plant, mimicking faulty op-

ration by inducing faults in the simulation models. The results show

hat each fault can be identified and isolated well, with an accuracy of

ver 80%. 

In conclusion, one drawback of classification-based methods is that

hey need measurement data with faults to train the machine-learning

odels. Hence, it is only possible to learn about faults that have already

appened (at least once) to the system. As this limits the fault cover-

ge of the algorithms, simulation data might be used instead, which,

owever, increases the effort to set up the algorithm. The exception is

20] , whose method can detect new faults without an additional train-

ng phase and labeled data. Unfortunately, their algorithm needs a lot

f fault-free data to model typical system behavior, requiring simulation

ata. 

. Fault detective 

This section describes how Fault-Detective works and explains why

t is designed this way. The first part contains a rough overview of the

ethod before each algorithm step is described in detail in its individual

ection. 

.1. Overview 

Fault-Detective aims to detect faults by modeling multiple target sen-

ors and comparing the predictions with the measurement values. If the

ifference between prediction (expected behavior) and measurement

actual behavior) is too high, an alarm is raised. 

This functionality is provided using a four-step approach, as depicted

n Figs. 2 and 3 . At the Feature-Selection (Step.1), one week of measure-

ent data is analyzed to identify correlated sensors. This step is needed

o determine which sensors can be used to model a specific target sen-

or. However, the algorithm searches for multiple sets of sensors as this

llows to detect a variety of faults. At the Algorithm Training (Step.2),

ach identified set is used to train a Random-Forest-Regressor (RFR).
5 
fter the training, predictions for the target sensor can be made using

he data of correlated sensors. Next, at the Fault-Detection (Step.3), new

easurement data is supplied to Fault-Detective . By comparing predicted

nd measured values, alarms can be raised if the differences are too

igh compared to the training. This is done for each trained regressor

argeting different sensors. Finally, the Retraining step (Step.4) continu-

usly improves the RFSs to increase their accuracy and adapt to seasonal

hanges in the measurement data. 

All these steps are performed automatically by Fault-Detective, with-

ut a need to change any hyperparameters. The only configuration that

eeds to be done by the user is specifying which sensors should be tar-

eted (see Fig. 2 ). 

.2. Step1: Feature Selection 

The Feature-Selection aims to identify sensors that can be used to

redict the target sensor. Knowing these sensor correlations is crucial for

raining accurate machine-learning models in the Algorithm-Training

tep. 

More precisely, we want to find multiple, minimal sets of input fea-

ures (i.e., sensors) that can sufficiently model a target sensor. The mo-

ivation behind this is the following: 

We want to have a minimal number of features as the modeling ac-

uracy of machine learning algorithms typically increases if only rele-

ant input features are used. That is because irrelevant features do not

old valuable information but are still processed by the algorithm. In

he best case, the machine-learning algorithm discovers that the data is

rrelevant to the prediction. In the worst case, however, the algorithm

ries to infer incorrect relationships between the unrelated sensors, re-

ulting in poor performance. Another advantage of using only relevant

ensors is that considerably less data needs to be processed. For example,

he datasets of this work contain about 100 sensors per plant. However,

nly a few sensors are needed to provide good models for a specific

arget sensor (see results in Section 5 ) while taking less time to parse.

lus, having fewer input features also allow users to better understand

hat the algorithm does. For example, imagine a machine-learning al-

orithm that predicts the volume flow based on the rotation speed of

 pump. The relation between these two measurements is more or less

traightforward, allowing solar thermal experts to interpret the algo-

ithm results quite well. In contrast, sensemaking of the prediction is

ay more difficult if hundreds of sensors are involved. 

Moreover, we want to have multiple feature sets because we want

o discover faults from many directions. For example, let us assume we

ant to detect faults by modeling the volume flow of the primary so-

ar circuit. One way to model the volume flow might be by using the

otation-speed signal of the pump. With this correlation, a user can

heck, for example, if there is a volume flow present if the pump is
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Fig. 3. Sketch showing each step of Fault-Detective’s approach. 

Fig. 4. Flowchart showing the concept of the Feature-Selection step. 
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witched on. Another set of features for predicting the volume flow

ight be the collector temperature and the irradiation. In contrast to

he other example, these measurements might be correlated based on

he system’s control. Hence, it might be used to check that the pump

tarts correctly as soon as the collector temperature or the irradiation is

bove a certain threshold. 

As these examples show, multiple small sets of correlated features

llow us to detect different faults. The idea behind the Feature-Selection

tep is thus to identify these individual correlations between sensors

utomatically. It allows Fault-Detective to be flexible as it discovers the

elations based on the data and still provides a high fault coverage as

arget sensors are monitored from multiple perspectives. 

The algorithm to identify these multiple minimal input-feature sets

or each target sensor is depicted in Fig. 4 : 

First, Fault-Detective requires a small part of historical data to analyze

he correlations. This data must contain enough variability of operating

onditions to represent typical system behavior. Otherwise, it will not

e possible to infer correct relationships. For example, the algorithm

annot identify correlated sensors accurately if the data only contains

easurements of rainy days with the plant not running. We found that

sing at least seven days of data typically fulfills this criterion. 

The measurement data must be prepared by discarding unreadable

alues and omitting monotonic sensors (e.g., accumulating heat meter

ensors). The latter is done as monotonically increasing/decreasing val-

es pose problems for the Random-Forest used by Fault-Detective in fur-

her steps. The reason is that decision trees cannot extrapolate values if

ew data lies outside of the range experienced during training. This re-
6 
uirement would be continuously violated if using accumulating sensors

or modeling. 

After the preprocessing, the data is used to train a Random-Forest-

egressor (RFR) to model the target sensor. As shown by [1] , this

achine-learning algorithm works well to model the multi-dimensional

nd nonlinear behavior of solar thermal systems. In addition, RFRs pro-

ide insights into which features (i.e., sensors) are the most important

or predicting the target sensors’ measurements. That allows assigning

 ‘feature-importance’ [5] to each input sensor, with higher values for

ore important sensors and summing up to 100%. Highly correlated

eatures can then be discovered by iteratively dropping features with

he lowest feature importance and checking if the remaining sensors

till allow modeling the target sensor sufficiently well. This procedure

s called Random-Forest Recursive-Feature-Selection (RF-RFS). It is also

pplied, for example, by [ 7 , 48 ]. However, while [48] only drop one

eature per iteration, we keep features with an accumulated feature-

mportance below 98%. This threshold was chosen to eliminate many

nrelated features at each iteration without accidentally removing too

uch important data. We stop the recursion if the number of remaining

eatures is small enough (less than N = 8 features), and the out-of-bag

core’ [5] would drop below a certain threshold (R 

2 < 0.96) if any more

eatures were discarded. For the number of remaining features, a value

f N = 8 was selected as models with more than eight features are dif-

cult to interpret based on feedback from domain experts. In addition,

 value of R 

2 = 0.96 was chosen based on the authors’ experience with

olar-thermal and other datasets, as models with similar or higher scores

ypically yield sufficiently accurate predictions. 
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After the RF-RFS, all irrelevant features should have been eliminated.

owever, the set might still contain sensors that are very similar to each

ther and hence contain redundant information. To further minimize the

umber of features, conventional Recursive-Feature-Selection (RFS) is

pplied. Hence, features are eliminated systematically, always discard-

ng the least relevant feature. It is constantly checked that dropping a

eature would not decrease the model’s accuracy too much, requiring a

inimum score of R 

2 > 0.94 after the deletion. In addition, features are

ot dropped if the new score would decrease more than dR 

2 > 0.01 com-

ared to the previous score. In contrast, if the score is increasing or still

bove R 

2 = 0.96, the feature is dropped immediately. These parameters

ere selected based on trial and error using the validation dataset. 

The process above is repeated until no more valid correlations are

ound or at least M = 5 feature-sets have been determined for each

arget sensor. Within the Feature-Selection step, the Random-Forest-

egressors is trained using T = 35 estimator trees and a max-depth of

0. These settings are used to limit the computation time, as the goal

s to identify correlated features instead of providing the most accurate

redictions. The other paramters are set to the Sci-Kit-Learn defaults

33] . 

The complexity of the Random Forest algorithm is O( 𝑣 ⋅ 𝑛 log 𝑛 ) ,
here n is the number of records and v is the number of features.

he Recursive-Feature-Selection adds a factor of O(v) to such complex-

ty in the worst case. In contrast, the complexity of the conventional

ecursive-Feature-Selection is O( 𝑣 3 ⋅ 𝑛 log 𝑛 ) and hence more involved.

owever, note that the number of input features 𝑣 has already been

educed to a maximum of 𝑣 = 𝑁 = 8 in the previous step. 

.3. Step 2: Algorithm Training 

The information from the Feature-Selection is now used in the

lgorithm-Training to create machine-learning models for each iden-

ified feature set. The aim is to get the most accurate models to predict

he behavior of the respective target sensors. In addition, we also want

o know how accurate the predictions are. By determining a confidence

nterval, it is possible to distinguish whether deviations are caused by

aulty system behavior or poor modeling. The complete process is de-

icted in Fig. 7 . 

In principle, any machine learning architecture that can handle the

onlinear multi-dimensional solar thermal data could be used for model-

ng the target sensor. For example, good modeling performance has been

hown for various Artificial-Neuronal-Network architectures [6] and

ree-based ensemble methods like Random-Forest-Regression [19] . In

his work, Random-Forest-Regressions are used as they do not need

uch preprocessing for the data, are resistant to overfitting, and out of

onvenience as they are also used in the Feature-Selection step. Hence,

n this step, each correlation is trained using a Random-Forest-Regressor

sing T = 200 estimator trees and no restriction on the depth of the trees.

his setup yielded sufficiently accurate results independently of the tar-

et and input sensors. 

To further increase the modeling accuracy, we use ‘Input-Lagging’

 14 , 35 ] to consider the temporal dependencies within solar thermal

ata. Hence, predictions also take previous timestamps of the input fea-

ures into account. That can improve the accuracy of the algorithms, as it

llows modeling phenomena like the slow heating-up and cooling-down

f fluids. An example can be seen in Fig. 5 , where the thermal power

f Plant 1 is predicted using Random-Forest-Regression with and with-

ut lagging. In this case, the unlagged Random-Forest-Regressor cannot

redict the behavior of the plant well (R 

2 = 0.92), while the lagged RFR

ields superior results (R 

2 = 0.96). Hence, the measurements are lagged

efore handing the data to the Random-Forest Regressors. In this work,

he last two timestamps (i.e., the last 10 min) are lagged. This rather

mall value allows us to consider short-term dependencies without risk-

ng overfitting due to uncorrelated data. 

Finally, the second part of the Algorithm-Training is to estimate the

ncertainty of the prediction. This step is crucial to interpret the differ-
7 
nces between predictions and measurements (i.e., the residuals) and

istinguish between typical and faulty behavior. By estimating a confi-

ence interval, it is possible to tell whether high mismatches are caused

y anomalies in the data or simply because of lousy modeling. However,

t cannot be assumed that the confidence margin is a constant value. For

xample, the behavior of the collector temperature might be very differ-

nt when the pump is running than during the night, as seen in Fig. 6 . In

his case, temperatures above 60 °C are predicted very well, while tem-

eratures below 60 °C are modeled less accurately. Hence, the machine

earning model might have different accuracies based on the operation

onditions. To accommodate this, we estimate the prediction errors for

ifferent regions of the target sensor’s domain. Using this strategy, the

lgorithm can be made more sensitive in regions where the model works

ell while having a higher confidence interval for regions less under-

tood by the algorithm. 

Thus, the flowing procedure is applied: After the training, the resid-

als are calculated using the ‘out-of-bag’ [5] predictions. Next, the do-

ain of the target sensor is split into 20 bins, computing the standard

erivative of the residual inside each bin. Assuming that the residuals

ollow a gaussian distribution centered at 𝜇 = 0 , that would mean that

esiduals of more than two times the standard derivative (i.e., 2 𝜎) only

ave a 5% chance of being correct. In contrast, residuals of more than

 𝜎 should be very unlikely. While the assumption that the error follows

 gaussian distribution in each bin is not generally valid, it is still used

s a best guess for defining the confidence margin. 

.4. Step3: Fault-Detection 

The trained algorithms can then be used to detect abnormal data.

hen provided with new measurements, each Random-Forest-Regressor

enerates predictions for its respective target. An alarm is triggered if

he difference between prediction and measurement is unusually high

ompared to the confidence interval. 

The following procedure is applied (see Fig. 8 ): When provided with

ew data, the regressor generates predictions for the target sensor. If

he residual exceeds three times the standard derivative (i.e., 3 𝜎) it is

egarded as suspicious . If it even exceeds four times the standard deriva-

ive of the residuals during training (i.e., 4 𝜎) it is regarded as an anomaly .

owever, warnings are only raised if the residuals are suspicious for at

east X = 5 consecutive timestamps and the mean residual of the past X

imesteps is above the respective thresholds. That is done to limit false

larms. 

Unfortunately, the Random-Forest-Regressor cannot extrapolate be-

ond the range of values experienced during training. As a result, it can-

ot predict values above/below certain thresholds. This behavior can

ead to false alarms, for example, if collector temperatures rise to un-

recedented levels due to seasonal changes. Hence, warnings are not

aised if the prediction is outside the known domain of the Random

orest Regressor. That values are labeled as out of bounds if both the

easured value is outside the domain of at least 50% of the decision

rees and the predicted value is outside the domain of at least one deci-

ion tree. The first criterion evaluates if the measurement data is outside

he typical range, which might be caused by seasonal changes but also

ue to faults or other events. In contrast, the second criterion ensures

hat the extrapolation issue affects at least one prediction. 

.5. Step4: Retraining 

At least seven days of data are initially used to train Fault-Detective in

he Algorithm-Training step. Unfortunately, it cannot be expected that

his small dataset can sufficiently describe the behavior of the system

or its whole lifetime. Instead, seasonal changes may affect the system,

or example, higher collector temperatures in summer compared to the

inter. Another example is a change between summer and winter load

rofiles which will affect the solar thermal system’s behavior even more

rastically. Hence, Fault-Detective must be retrainable to adapt to these
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Fig. 5. Example of Random-Forest-Regression with and with- 

out lagging. The prediction of the lagged Random-Forest- 

Regressor (blue) shows a higher agreement to the measure- 

ment values (black) compared to the unlagged regressor 

(gray). 

Fig. 6. Example of the binned confidence margin. The graph compares mea- 

sured (y-axis) and predicted (x-axis) values for the solar collector temperature. 

Ideally, all points lie on the diagonal (black line). The confidence margin (blue 

area) shown is two times the standard derivative inside each bin (confined by 

the gray lines). 
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hanges and learn from new measurement data. That will keep the pre-

iction and fault-detection accuracy high throughout the year. Hence,

fter the Fault-Detection step is finished, an additional Retraining step

s performed. It parses the data again, updating the Random-Forest-

egressor and the confidence margin. Similar to the Feature-Selection,
Fig. 7. Schematic showing the concep

8 
e found that at least seven days of data are necessary for retraining.

his amount of time includes enough variability of the operating condi-

ions to infer correct models by the Random Forest Regressor. 

The procedure is as follows (see Fig. 9 ): If provided with retraining

ata, Fault-Detective trains some new decision trees and randomly dis-

ards the same amount of old decision trees. The training is performed

n the same way as at the Algorithm Training step. By default, the re-

raining is scheduled daily, replacing T = 10 decision trees (i.e., 5% of

ll trees) per day. In addition, the confidence margin is updated by cal-

ulating the standard derivative of the residuals in each bin using the

ew data. The results are then added to the previous statistics as shown

n equation ( Eq. (1) ). 

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 

√ √ √ √ 

(
𝜎𝑜𝑙𝑑 

)2 
⋅𝑁 𝑜𝑙𝑑 + 

(
𝜎𝑛𝑒𝑤 

)2 
⋅𝑁 𝑛𝑒𝑤 

𝑁 𝑜𝑙𝑑 + 𝑁 𝑛𝑒𝑤 

(1) 

However, care must be taken to exclude faulty data before retraining

he algorithm. Otherwise, the algorithm would model faulty system be-

avior and no longer yield reliable predictions. Hence, data is excluded

here anomalies (i.e., residuals of more than then 4 𝜎) occur 2 h before

r after each respective timestamp. This way, only fault-free data is used

or improving the model accuracy. 

Unfortunately, faults are not the only events that cause the data to

eviate from typical system behavior. For example, changes in system

ontrol, services, and repairs might also permanently change the sys-

ems’ behavior. Such events will likely be identified as an anomaly by

ault-Detective and hence would be excluded from retraining. However,

n contrast to faults, it is desired that Fault-Detective retrains on this

ata to adapt to permanent changes. Otherwise, false alarms will be

aised continuously every day. To distinguish between these permanent

hanges and faults, we look for anomalies that persist for at least 30 min

or multiple days (i.e., 4 out of 7 days). Here, the 30 min are used to fil-

er out short-term faults, while requiring the anomaly to be present 4 of
t of the Algorithm-Training step. 
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Fig. 8. Schematic showing the concept behind the Fault-Detection step. 

Fig. 9. Schematic showing the concept of the Retraining step. 
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f  
 days allows verifying if the anomaly is persistent. If such a permanent

hange is detected, Fault-Detective informs the user about it and retrains

0% of the decision trees (i.e., T = 100 trees) on the retraining data to

dapt to the changes faster. 

In addition, seasonal changes might cause extrapolation problems,

eading to wrong predictions in case the values are outside of the range

xperienced in the past. If such events are detected (see Fault-Detection

tep), T = 50 decision trees (i.e., 25% of the tree) are replaced instead

o increase the adaption rate. 

. Evaluation method 

This section explains how Fault-Detective is evaluated using the mea-

urement data of three large-scale solar-thermal systems of different

izes and structures. For this purpose, the available data is described,

nd then the measures for validating the Adaptability, Modelling Accu-

acy, and the Fault Detection Performance are introduced and discussed.

.1. Available data 

The performance of Fault-Detective is extensively evaluated using

easurement data of three large-scale solar thermal systems with sizes

f more than 1000 m 

2 of collector area. The plants are used for differ-

nt applications: cooling, heating, or hot water supply, and have differ-

nt layout schemes and control strategies. The data is accessed using a

atabase providing measurements with a resampling rate of 5 min. One

ear of data from each system is used, which allows for testing Fault-

etective’s ability to adapt to different seasonal conditions. The datasets
9 
ontain around 100 sensors per plant. About half of the sensors con-

ained in the dataset measure collector temperatures in different col-

ector rows. In addition, each dataset contains measurements for the

ow- and return temperature and pump rotation speed of each thermal

ircuit. The thermal power, volume flow, valve positions, electric con-

umption, and storage temperatures at different layers are also recorded.

or the evaluation, three sensors insightful for monitoring solar thermal

lants are used as a target at each plant: one randomly selected collector

emperature, the flow temperature of the primary circuit, and the solar

hermal power. 

.2. Computational resources 

The training and evaluation of Fault-Detective have been done using

n Intel Core i5–8250 U processor and 16 GB RAM. The implementa-

ion is done in Python 3.9 using the libraries Sci-Kit-Learn [33] , Pandas

44] , and NumPy [18] . The Feature-Selection took 18 s per target sensor

n average, identifying one input feature set every 4 s. For each iden-

ified set, the Algorithm-Training took 2.6 s on average to train a new

andom-Forest-Regressor. The Fault-Detection took 0.07 s per day and

lgorithm, while the Retraining took 0.23 s per day and algorithm on av-

rage. Hence, 26 min were required to parse one year of data targeting

ll three sensors for each of the datasets. 

.3. Data usage for evaluation 

The evaluation uses walk-forward validation, meaning that data is

ed to Fault-Detective walking forward in time. That is done as con-
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Fig. 10. Summary of the data usage: Only the 

data of two plants are used as the validation set 

(gray boxes). The remaining data (blue boxes) 

is used as the test set for the final performance 

evaluation. 
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entional cross-validation strategies do not work well on time-series

ata. Since there are temporal correlations between data points, shuf-

ing would result in poor generalization and overfitting [4] . Instead,

he data of each system is provided to Fault-Detective as follows: The first

onth of data is used for the feature selection (step 1) and the initial

raining (step 2). These are the steps required to set up Fault-Detective .

he remaining months are used for fault detection (Step.3) and retrain-

ng (Step.4) - providing Fault-Detective with daily chunks of data. That

rocess emulates how new data is passed to Fault-Detective in an in-situ

etting. 

Datasets for machine learning are typically divided into three parts:

he training set allows us to train the algorithm, the validation set can be

sed to check how the trained algorithm performs and adjust it accord-

ngly, and the test set is used to evaluate the final algorithm in terms

f performance. Hence, the test set is only used once to ensure that the

tatistics hold true for unseen data. This work uses the first six months

f Plant1 and Plant2 as training- and validation sets to develop Fault-

etective and set all its hyperparameters. In contrast, the remaining six

onths of Plant 1 and Plant 2 and the whole dataset of Plant 3 (see Eval-

ating Adaptability) were used for the final testing. The whole process

s illustrated in Fig. 10 . 

.4. Evaluating adaptability 

One of the benefits of Fault-Detective is that it can automatically adapt

o multiple solar thermal systems, providing flexibility and easy instal-

ation. To prove this claim, the same algorithm with the same hyperpa-

ameters is used at all plants, ensuring no system-specific configuration

s needed. For this reason, the data from Plant 3 is not used in the val-

dation step. Instead, Fault-Detective is directly applied to the dataset of

lant 3 without any manual adjustment and with the same parameters

sed for the other plants. 

.5. Evaluating modelling accuracy 

The modeling accuracy is evaluated using the following metrics for

ach of the target sensors: The mean absolute error (MAE), the root

ean squared error (RMSE), and the coefficient of determination (R 

2 ).

ll scores are calculated using the sci-kit-learn package [33] . 

The mean absolute error (MAE) indicates the average difference be-

ween predicted 𝑦̂ and measured values 𝑦 . Hence, MAE scores are close

o zero in case of perfect predictions and have the same unit as the target

alue 𝑦 . 

𝐴𝐸 ( 𝑦, 𝑦̂ ) = 

1 
𝑛 

𝑛 −1 ∑
𝑖 =0 

||𝑦 𝑖 − 𝑦̂ 𝑖 
|| (2)

The root-mean-squared error (RMSE) is closely related to the MAE.

owever, it adds a higher penalty to more significant deviations be-

ween predicted and measured values. Again, values close to zero indi-

ate an excellent prediction, while high values indicate bad prediction

erformance. 

𝑀𝑆𝐸 ( 𝑦, 𝑦̂ ) = 

√ √ √ √ 

1 
𝑛 

𝑛 −1 ∑
𝑖 =0 

(
𝑦 𝑖 − 𝑦̂ 𝑖 

)2 
(3)
10 
Finally, the coefficient of determination (R 

2 ) indicates how well the

ariance of the predicted values can explain the variance of the mea-

ured values. It can generally be interpreted as goodness-of-fit, with a

core of R 

2 = 1 for perfect predictions. At the same time, low values in-

icate bad prediction performance. 

 

2 ( 𝑦, 𝑦̂ ) = 1 − 

∑𝑛 

𝑖 =1 
(
𝑦 𝑖 − 𝑦̂ 𝑖 

)2 
∑𝑛 

𝑖 =1 
(
𝑦 𝑖 − 𝑦̄ 

)2 (4)

Where 𝑦̄ = 

1 
𝑛 

𝑛 ∑
𝑖 =1 

𝑦 𝑖 is the average measured value. 

.6. Evaluating fault detection performance 

In addition, Fault-Detective is compared with manual fault detection

o evaluate the fault detection performance. To do so, a solar thermal ex-

ert analyses the data of all three plants. Any events (e.g., faults, anoma-

ies, or maintenance events) that occur at the plant are documented.

imilarly, Fault-Detective is applied to the test and validation dataset,

xecuting all four algorithm steps. Each anomaly the algorithm iden-

ified is then manually examined to determine whether a false alarm

r an actual fault occurred. The performance is evaluated by analyzing

he number of true-positive and false-positive alarms and comparing the

umber of faults detected by manual and automatic fault detection. As

oted above, this process is only done once after the development of the

lgorithm has finished, using the same parameters at all three plants and

equiring no user input except specifying the target sensor. 

. Results 

This section shows the results of Fault-Detective using the test datasets

f all three solar thermal systems. The first part contains an analysis of

he Feature-Selection step, showing which correlations were identified

y Fault-Detective . In the second part, the modeling accuracy in terms of

he coefficient of determination (R 

2 ), mean absolute error (MAE), and

oot mean squared error (RMSE) is presented. The last part shows which

aults have been found by Fault-Detective. The results are compared to

he manual fault detection performed by the monitoring personnel as

ell. 

.1. Features selection 

The first step of Fault-Detective is to identify correlated sensors in the

eature-Selection step, using the first week of the training data. As writ-

en in Section 4 , three sensors are targeted at each system: one randomly

elected collector temperature, the flow temperature of the primary cir-

uit, and thermal power. The results can be seen in Fig. 11 . 

Targeting the collector temperature, Fault-Detective primarily identi-

es correlations to other collector temperature sensors. This is expected

s collector rows next to each other also experience the same return

ow and irradiation and are adjusted to yield similar flow temperatures.

ence, the modeling accuracy on the training set is also very high, with

n average score for the coefficient of determination of R 

2 = 0.98. Inter-

stingly the scores for Plant 2 are lower than the others, while more

nput sensors are identified at Plant 3 . 
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Fig. 11. Results of Feature-Selection, showing which sets of sensors were identified to be correlated to the target sensor, sorted by their feature importance. In 

addition, the out-of-bag score (R 2 ) for each sensor set is shown. 
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Concerning the power measurements, Fault-Detective also manages to

dentify some apparent relations. For example, the thermal power can

e calculated using the volume flow and the temperature difference of

he solar circuit. This correlation is successfully identified at both Plant

 and Plant 3. However, no volume-flow-related sensor was selected

argeting Plant 2. The reason might be that the pump speed is running

t discretized levels. Hence, volume flow can be well estimated based

n the temperature sensors. 
11 
In addition to the obvious input-feature sets, more insightful corre-

ations are also identified. For example, the electric consumption and

he pressure at the solar circuit correlate with the volume flow. Hence,

hey are used to predict the power in the case of Plant 2. As another

xample, the irradiation and some storage temperatures are selected

t Plant1 as they are connected to system control. Surprisingly, Fault-

etective does not select the irradiation in the case of Plant 2 and

lant 3. 
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Fig. 12. Results for the modeling accuracy of each correlated sensor set, showing the coefficient of determination (R 2 ) score for the initial first week of data (Training), 

the validation set (Validation), and the test set (Test). In addition, the mean absolute error (MAE) and the root mean squared error (RMSE) for the test set are shown. 

Finally, the number of alarms raised by Fault-Detective and the percentage of alarms corresponding to verified faults are also shown. 
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To predict the flow temperature, Fault-Detective identifies various

ensor sets. For example, Fault-Detective correctly recognizes the redun-

ant sensors installed for this measurement at all three plants . As the

ensors are positioned next to each other, the resulting model yields

ery high scores of R 

2 = 0.999. 
12 
In addition, a lot of collector and storage temperatures are selected

o model the solar primary flow temperature. That is expected, as the

ow temperature is a mixture of the individual collector rows. Simi-

arly, the storage temperatures often serve as system control setpoints

or controlling the pumps. 
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Fig. 13. Prediction results using sensor set 07 

targeting the collector temperature of Plant 2. 

A false-alarm is raised on the third day (red 

dots) due to natural circulation affecting the 

collector temperature 42, which is used as the 

input sensor. 

Fig. 14. Prediction results using sensor set 

13 for targeting the collector temperature at 

Plant 3. On the third and the fourth day, the 

cooldown of some collectors is delayed, lead- 

ing to false alarms and incorrect predictions. 

 

s  

v

5

 

v  

fi  

R  

t  

e

 

o  

a  

s  

i  

v  

c

 

a  

t  

a  

s  

s  

p

 

b  

d  

i  

I  

i  

D

 

b  

(  

y

 

s  

S  

p  

t  

r  

t  

s

 

s  

T  

w  

p  

c

 

y  

i  

t  

fl  

n

 

t  

fi  

t  

o  

fl  

p  

e  

c

In summary, all the feature sets identified by Fault-Detective are rea-

onable and yield good modeling results on the training dataset with

alues above R 

2 > 0.95. 

.2. Modeling accuracy 

As discussed in the Evaluation Method ( Section 4 ), walk-forward

alidation is used for testing Fault-Detective’s performance . Hence, the

rst month of data is used for the initial training of the Random-Forest-

egressors, using the identified features of the Feature-Selection. Next,

he Fault-Detection step is carried out using daily chunks of data. After

ach day, the past seven days are used for retraining the algorithms. 

Fig. 12 shows the accuracy scores of all individual regressors in terms

f the coefficient of determination (R 

2 ), the mean-absolute-error (MAE),

nd the root-mean-squared-error (RMSE). In order to compute these

cores, only data from fault-free system behavior was used. Hence, ver-

fied events influencing the system behavior (i.e., faults and services

erified by the monitoring personnel) were excluded from the data to

ompute the scores. 

For most sensor sets, the R 

2 scores for the validation and test dataset

re similar to those during the Feature-Selection, which indicates that

he algorithm can extrapolate to unseen data well. In addition, the MAE

nd RMSE scores are low, indicating that the models can predict the re-

pective target sensor sufficiently well. However, the following sensor

ets perform considerably worse on the validation and test sets com-

ared to the training: 

In the case of set 07, the temperature of collector 63 is predicted

ased on collector 42. During some days, the fluid in the pipes shifts

ue to natural circulation. When the fluid passes the temperature sensors

nside the pipes, the sensor registers a significant temperature change.

n contrast, other collector sensors are not affected at all. This effect

s somewhat unpredictable and hence cannot be modeled by Fault-

etective well (see Fig. 13 ). 
13 
An example of such a case can be seen in Fig. 13 . The differences

etween the scores for the test set (R 

2 = 0.91) and the validation set

R 

2 = 0.94) can be explained as more of these events happened in the

ear’s second half, coincidently. 

A very similar phenomenon can also be recognized in the case of

ensor-set 13, which targets the collector temperature 05 of Plant 3.

hortly after the pumps are switched off each day, the collector and

ipes start to cool down. However, hot fluid sometimes shifts towards

he temperature sensor, leading to a slight temperature increase. As a

esult, the cooldown at some sensors is delayed by a short time, leading

o high prediction errors (see Fig. 14 ). The same issue also affects sensor

ets 5–14 and 30–39 and, unfortunately, often leads to false alarms. 

In addition, there is a drop in prediction accuracy in almost all sen-

or sets targeting the flow temperature of Plant 2, namely sets 31–34.

he reasons for the low scores are periods with concurrent days of bad

eather, leading to a slight decrease in temperature in the storage and

ipes. Unfortunately, this rare event (happening only twice in one year)

annot be interpreted correctly by Fault-Detective (see Fig. 15 ). 

Finally, sensor set 39 targeting the flow temperature at Plant 3 also

ields low accuracy scores. One reason is that the primary solar pump

s sometimes switched on in the afternoon for a short time. As a result,

he flow temperature decreases rapidly as the collector’s cooled-down

uid reaches the sensor. Again, Fault-Detective fails to predict this phe-

omenon correctly (see Fig. 16 ). 

Apart from these issues, the Random-Forest-Regressors also often fail

o correctly predict the system’s behavior when the pump starts for the

rst time of the day. Due to the already hot collector temperatures and

he low temperatures in the pipes, high values for the solar power can

ccur. Similarly, collectors are suddenly cooled down by the cold return

ow, while the hot temperature from the collectors passes the flow tem-

erature sensors. While Fault-Detective can model these effects to some

xtent, the exact temperatures and the specific timing of these changes

annot always be predicted by the algorithm well (see Fig. 15 ). 
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Fig. 15. Prediction results for sensor set 31 for 

Plant 2. Starting on the 20th of June, a series 

of bad-weather days occurs, leading to false 

alarms. In addition, the pump start-up in the 

morning leads to false alarms between the 17th 

and 19th of June. 

Fig. 16. Prediction results for senor set 39 tar- 

geting the flow temperature of Plant 3. On 

some days, the primary solar pump is switched 

on in the afternoon for a short time, decreas- 

ing the flow temperature and leading to false 

alarms. 

Fig. 17. Correct detection of Limited Extrac- 

tion event via sensor set 37, which targets the 

flow temperature of Plant 3. Due to the lim- 

ited heat extracted from the storage, the col- 

lector temperatures increase for a short while. 

The anomaly was spotted even though the tem- 

peratures did not reach critical levels. 
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Nevertheless, the overall accuracy of the Random-Forest-Regressors

s high, with an average score of R 

2 = 0.96 on the test set and good vi-

ual overlap between predictions and measurements, especially during

ominal system operation. 

.3. Fault-detection accuracy 

In addition, the ability to detect faults is evaluated as well. Table 5

ists the fault and service events that were detected either by manual

ault detection or with the help of Fault-Detective. The results show that

ll faults identified by the monitoring personnel were also detected by

t least one Random-Forest-Regressor. Surprisingly, there are even some

aults that the domain experts missed. For example, Fault-Detective iden-

ified “Limited Extraction ” on the 27th of December at Plant 3, where the

onsumer side of the system extracts abnormally little energy from the

rimary circuit. As a result, the collector, flow-, and return temperatures

ncrease. While the monitoring personnel missed these slight changes,

ault-Detective managed to identify the abnormal system behavior (see

ig. 17 ). Similarly, the faults “High Collector Temperatures ” and “High
14 
ollector Temperatures (Subfield) ” were detected successfully (see

igs. 18 and 19 ). 

However, despite these correct detections, the statistics in

ig. 11 clearly show that the precision of most regressors is poor, with

any false positives being raised. Especially the sensors-sets targeting

he collector temperatures and flow temperatures of Plant 2 and Plant 3

aise many false alarms. The reason for this is the low prediction accu-

acy for the behavior during the “start-up ” of the pumps (see Fig. 14 ) and

he different cooldown behavior of the collector temperatures ( Fig. 12 ).

n contrast, targeting the thermal power sensor seems to be very suc-

essful, with an overall precision of 91%. 

. Discussion 

The results of Fault-Detective are mixed. On the positive side, each

lgorithm step performed well. The Feature-Selection successfully iden-

ified correlated sensors. The resulting sets are both reasonable from a

hysical point of view and show good modeling performance. Similarly,

he Algorithm-Training and Retraining step modeled typical system be-
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Fig. 18. High collector temperatures (all col- 

lectors) event detected with sensor set 15 tar- 

geting solar power of Plant 1. On the second 

day, heat cannot be extracted for a short period 

of time, increasing the collector temperatures 

and decreasing the thermal power. 

Fig. 19. High collector temperatures (subfield) 

event detected via sensor set 5 targeting the 

collector temperature. On the third day, the 

temperatures of collector 63 are rising, while 

collector 33 remains at low-temperature levels. 

Fault-Detective correctly raises the alarm even 

before temperatures above 90 °C occur. 
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avior well, resulting in high R 

2 scores. In addition, the Fault-Detection

tep allowed detecting all faults spotted by the monitoring personnel.

he algorithm even identified some faults that were missed by the ex-

ert. The evaluation also backs up the claim that Fault-Detective can

e flexibly applied to different plants since the results of all data sets

re similar. In summary, promising results are achieved targeting the

hermal power, with a precision of 91% and almost no false alarms

aised. 

However, many false alarms are raised when targeting the temper-

ture sensors (see statistics in Fig. 12 ). Hence, Fault-Detective cannot

e used as-is for fault detection, as the false alarms would create much

verhead for the personnel. While results from [41] indicate that similar

alse-positive rates are also expected using other FD methods, the eval-

ation still suggests that only thermal power can be sufficiently moni-

ored by Fault-Detective in an in-situ setting. 

Interestingly, most of the false alarms can be explained by abnormal

ystem operation (e.g., unpredictable natural circulation, pumps start-

ng late at night), momentarily outlier (e.g., system start-up), or other

are events (e.g., consecutive days with bad weather). That suggests that

ault-Detective works well in learning typical system behavior but fails

o distinguish anomalies from faults. Hence, similar false alarms may

lso be raised by other identification-based methods that attempt to de-

ect faults by modeling typical system behavior. In addition, the results

einforce the importance of testing fault detection algorithms with mea-

urement data, as most false alarms were caused by system behaviors

arely modeled by simulations. 
Table 1 

Additional details about the datasets used to valida

Name Coll. Area Nr. of Sensors Sampling R

Plant 1 > 1000 m 

2 113 5 min 

Plant 2 > 1000 m 

2 171 5 min 

Plant 3 > 1000 m 

2 86 5 min 

15 
In order to limit false alarms, future work might use clustering ap-

roaches to group similar faults together. Hence, a user must only di-

gnose similar anomalies once, while new faults belonging to the same

ategory are automatically labeled. This would considerably speed up

he monitoring personnel’s work and severely limit the impact of false

larms. In addition, future studies might also investigate interactive ap-

roaches, for example, by letting the user interact with Fault-Detective

n a visual interface to monitor solar-thermal systems. 

Furthermore, both the Feature-Selection and the Algorithm-Training

ight be improved: 

Currently, Random-Forest-Regressors are used to model the behav-

or of solar-thermal systems. However, the evaluation suggests that sea-

onal changes in the data and rare events like multiple consecutive bad

eather days lead to mispredictions. This could be improved using dif-

erent sampling approaches, more extensive training periods, or differ-

nt machine learning algorithms. For example, long-short-term-memory

STM networks do not suffer from extrapolation issues and might yield

etter results. They also allow for retraining the algorithm without los-

ng information from historical data and automatically can handle tem-

oral dependencies in the data. 

In addition, some expected correlations were not identified by the

eature-Selection step. For example, the irradiation sensor is not se-

ected for predicting the thermal power at some plants, although they

re correlated. The reason might be that some time is needed until the

rradiation affects the thermal power due to the high inertia of the fluid

nd heat capacity of collectors and pipes. However, temporal dependen-
te and test Fault-Detective . 

ate Nr. of Timesteps Used for 

105,120 Validation & Testing 

105,120 Validation & Testing 

105,120 Testing only 
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Table 2 

Results for Fault-Detection showing the types of faults in the datasets. In addition, the number of occurrences and the percentage of correctly detected faults 

via manual and automatic fault detection are shown for each category. 

Event Name Description Amount Detected by Fault-Detective Detected Manually 

High collector temperatures The temperature of most collectors is higher than 120 °C. 3 100% 100% 

High collector temperatures (subfield) The temperature of some collectors is higher than 120 °C. 2 100% 100% 

Limited Extraction Energy extraction is limited due to a fault on the consumer side. 5 100% 0% 

Pump speed to low The volume flow is too low. 4 100% 0% 

Constant Data The data logger records no or constant data. 8 100% 88% 

Service Conducted A service/repair is conducted that affects the system. 7 100% 100% 

System Settings Changed System control of the solar system changed permanently 5 80% 80% 
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ies are currently not accounted for in the Feature-Selection step. Hence,

uture work could investigate using Input-lagging or similar techniques

or the Feature-Selection to improve the results. 

. Conclusion 

This work introduced a new fault detection algorithm called Fault-

etective, a purely data-driven approach requiring no domain knowledge

f the solar thermal system. The algorithm was extensively validated us-

ng the data from three large-scale solar thermal systems, targeting a

ollector temperature sensor, a flow temperature sensor, and thermal

ower. The results are compared to manual fault detection performed

y solar thermal experts ( Tables 1 and 2 ). 

The evaluation shows that Fault-Detective can adapt to multiple sys-

em layouts without any adaption, proving the algorithm’s flexibility and

ase of configuration . In addition, all faults found by the monitoring per-

onnel could also be identified by Fault-Detective , proving the high fault

overage of the algorithm. The algorithm could detect even some ad-

itional faults that were missed by the experts. However, many false

larms are raised when targeting temperature sensors, as Fault-Detective

annot differentiate between faults and other (less severe) anomalies

n the system data. Nevertheless, promising results are achieved tar-

eting the thermal power, with a precision of 91% and few false alarms

aised. While further studies are necessary, the work thus concludes that

ault-Detective is promising to support the monitoring personnel during

onitoring thermal power. 
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