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A B S T R A C T

The number of large-scale solar thermal installations has increased rapidly in Europe in recent years, with
70% of these systems operating with flat-plate solar collectors. Since these systems cannot be easily switched
on and off but directly depend on the solar radiation, they have to be combined with other technologies
or integrated in large energy systems. In order to most efficiently integrate and operate solar systems, it is
of great importance to consider their expected energy yield to better schedule heat production, storage and
distribution. To do so the availability of accurate forecasting methods for the future solar energy yield are
essential. Currently available forecasting methods do not meet three important practical requirements: simple
implementation, automatic adaption to seasonal changes and wide applicability. For these reasons, a simple
and adaptive forecasting method is presented in this paper, which allows to accurately forecast the solar heat
production of flat-plate collector systems considering weather forecasts. The method is based on a modified
collector efficiency model where the parameters are continuously redetermined to specifically consider the
influence of the time of the day. In order to show the wide applicability the method is extensively tested with
measurement data of various flat-plate collector systems covering different applications (below 200 ◦Celsius),
sizes and orientations. The results show that the method can forecast the solar yield very accurately with
a Mean Absolute Range Normalized Error (MARNE) of about 5% using real weather forecasts as inputs and
outperforms common forecasting methods by being nearly twice as accurate.
1. Introduction

In 2019, solar thermal heat represented one of the top three re-
newable sources driving climate protection, together with wind power
and photovoltaics [1]. In this context, the number of large-scale so-
lar heating installations has increased rapidly in European countries,
e.g., in Denmark [2], but also worldwide in the last couple of years,
leading to the installation of about 400 large-scale solar thermal sys-
tems (>350 kWth, 500m2) by the end of 2019 [1]. In Europe, about 70%
of all solar thermal systems installed are flat-plate solar collectors [1],
making them an important technology in this sector.

Even though the systems are mature and achieve high efficiency
rates, they cannot be simply switched on and off but directly depend on
the solar radiation. For this reason, these systems have to be combined
with other technologies or integrated into large energy systems. In
both cases, it has been shown that a significant potential exists for
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improvement when considering the future solar yield in their high-level
controllers, e.g. energy management system (EMS), see [3], in order
to optimally schedule heat production, storage and distribution for the
near future, e.g. [4]. For example, by considering the predicted solar
energy yield, the number of unnecessary operations performed by other
heat production units (e.g. gas boilers) can be reduced, while managing
the heat storage and the distribution in ways that always allow the full
solar yield to be used, saving money and increasing the overall system
performance. Furthermore, critical overheating problems in the solar
plant can be eliminated since knowing the predicted solar yield enables
night-cooling strategies to be applied well ahead of time (e.g., see [5]).

In view of practical applicability, the forecasting method of the
future solar energy yield should meet three requirements:
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1. Simple implementation – The methods should not require high
computational effort or depend on third party software in or-
der to be platform independent and easily implementable on
commercially available controllers.

2. Automatic adaption – The methods should automatically adapt to
variations over the year (e.g. seasonal changes) minimizing the
re-parameterization effort.

3. Wide applicability – The methods should be able to be used
to describe a large variety of different solar collector installa-
tions, regarding application (hot water and process heat), size,
orientation and climate conditions.

Before investigating how these aspects are addressed by currently
available forecasting methods for the solar energy yield the results of
an extensive literature review is presented.

In general, forecasting the energy yield of solar thermal systems is in
comparison to the electrical sector, see e.g. [6,7], a smaller and younger
research field. In this field, two methods are commonly available for
predicting the behaviour of solar thermal systems: one is built upon
physically based models, the second is a rapidly growing field based
on computational intelligence techniques (CIT), see [8].

Regarding the first method, several models of different complexity
could generally be used to forecast the solar energy yield. In [9], a
complex model based on coupled partial differential equations is pre-
sented for describing the behaviour of solar collector fields, achieving
a high level of accuracy. Furthermore, in [10], an ordinary differential
equation is used to simulate the thermal efficiency of a parabolic
trough and flat-plate collector field. Finally, in [11], a simple algebraic
collector model is used to perform an online forecast of the energy
yield from solar thermal collectors. The advantages of these model-
based methods are that high degrees of accuracy for small time steps,
e.g. 1 s, can generally be obtained as well as their physically motivated
modelling approach. The disadvantages are the necessity of having
domain knowledge, the frequently high levels of complexity and the
need to perform an exhaustive exploration of their (many) parameters.

Regarding the second method, several recent contributions use com-
putational intelligence techniques (CIT) to predict the solar energy
yield. In [12] artificial neural networks (ANNs) are used to predict
the performance of large solar systems including the expected energy
yield. In [13], an artificial neural network (ANN) was also used to
predict the solar yield and local outside temperatures. A review on
using ANN techniques to predict the performance of solar collector
systems was presented [14]. Furthermore, in [15], ANN is compared to
an adaptive neuro fuzzy interface system (ANFIS) to model and predict
the efficiency of flat-plate solar collectors. ANFIS is also used in [16]
for modelling the performance prediction of a whole solar thermal
energy system. Besides neural-network-based algorithms, Ahmad et al.
[8] uses machine learning algorithms to predict the useful solar ther-
mal energy, by investigating support vector machines, random forest
and extra trees. Finally, in [17], deep learning models are trained to
predict the performance of solar hot water systems under different
meteorological conditions, exploring ANN, recurrent neural networks
and long short-term memory. The advantages of these computational
intelligence techniques are that no domain knowledge is necessary,
resulting in a black box modelling approach which can be easily applied
to different systems. The disadvantages are the need for exhaustive
data, the risk of over-fitting, the necessary computing power and the
often platform dependent algorithms.

Furthermore, hybrid approaches exist that use a solar thermal model
where the parameters are determined by applying CIT techniques.
For example, this approach was performed to predict the collector
performance in a similar way in [18–21].

Regarding the simple implementation, for the methods using phys-
ical models its depend on the model structure if they can be simply
implemented. While the model from [9] needs experts for the im-
2

plementation the models from [10,11] can be implemented simply.
The methods based on machine learning approaches, including those
described in [8,12,13,15–19], need significant computational power,
often rely on third-party software, large amounts of data from several
inputs and typically experts for their implementation as well as their pa-
rameterization. Thus these methods cannot be considered to be simply
implemented in off-the-shelf controllers, which have strict limitations
regarding their performance, memory and software.

Regarding the automatic adaption, only Bacher et al. [11] mention
that the applied models adapt over time due to changes in the surround-
ings, wear or exposure to dirt, but these adaptations and changes were
not verified in the provided simulation studies. The models described
in [9,10] are not designed for an automatic adaption, as they have fixed
parameters. Machine learning approaches, Kalogirou [18], Xie et al.
[19], Khademi et al. [15], Kalogirou et al. [12], Yaïci and Entchev [16],
Kramer and Bitterling [13], Ahmad et al. [8] and Correa-Jullian et al.
[17], can be considered generally as adaptive; however, the adaptivity
is often not specifically evaluated in the contributions and typically
the additional training process requires a large amount of data and
extensive computational resources.

Finally, regarding the wide applicability, the methods are developed
and evaluated only for one single plant, Kalogirou [18], Xie et al. [19],
Pasamontes et al. [9], Khademi et al. [15], Kalogirou et al. [12], Yaïci
and Entchev [16], Kramer and Bitterling [13], Ahmad et al. [8] and
Tian et al. [10], or merely in simulation studies, Bacher et al. [11],
Lee et al. [21] and Correa-Jullian et al. [17]. Therefore, the wide
applicability regarding application, size, orientation, or climate has not
yet been shown.

Overall, this review of the literature reveals a research gap: No fore-
casting method currently exists that enables to predict the solar energy
yield and meet the three above mentioned requirements of being simple
to implement and therefore platform independent, automatically adapts
itself to changing conditions and is widely applicable. Only Nigitz and
Gölles [22] proposes a simple, adaptive and widely applicable method
that can be used to forecast the consumers’ heat demand. Since, this
method meets the aforementioned three requirements, there has been
already a first incomplete attempt of the authors to generalize this
method in order to use it also for the heat production of collector
installations [23]. However, this first incomplete attempt of the authors
was the basis to fully develop, improve and comprehensively evaluate
the method leading to this paper. Among other aspects is the method
improved regarding: structure of the correction function, determination
of its model parameters, evaluation of different optimization algo-
rithms, extensive evaluation of its short-term and long-term accuracy
with real measurements of a multiplicity of solar systems, practical
applicability regarding its long-term accuracy using real weather fore-
casts, complete description of the method and its advantages over other
forecasting methods, extensive investigation of all its parameters and
recommendations on how to choose them, comparison to two currently
available commonly used forecasting methods.

The research gap is filled by the novel method since it is based on
a modified efficiency equation of flat-plate solar collectors where all
parameters are continuously redetermined to specifically consider the
influence of the time of the day and seasonal changes. The adaption
is based on linear regression approach and therefore allows a platform
independent implementation. Finally, since the method is based on a
modified energy balance that is valid for all kind of flat-plate collectors,
it can be assumed to be widely applicable. This wide application is
proved by performing an comprehensive practical validation with real
measurement data from several collector systems.

The paper is structured as follows: in Section 2, the forecasting
method is derived from two forecasting principles that are often used
in the literature: the seasonal naïve method presented in Section 2.1
and the data sheet method presented in Section 2.2. The resulting
forecasting method, presented in Section 2.3, is then experimentally
validated in Section 3, including a description of the experimental setup
in Section 3.1, a discussion of validation measures in Section 3.2, the
parameters determination in Section 3.3 and the experimental results
in Section 3.4. Finally, in Section 4, a conclusion about the presented
method is drawn and a short outlook is provided.
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2. Forecasting method

First, two already existing and principally suitable methods for
forecasting the solar yield are investigated and their advantages and
disadvantages are discussed: the seasonal naïve method is presented
in Section 2.1 and the data sheet method is presented in Section 2.2.
Based on the findings of these discussions, the new adaptive forecasting
method is derived and presented in Section 2.3; this method combines
the advantages of the two aforementioned methods and, at the same
time, eliminates their disadvantages. The superiority of the newly
developed adaptive method is later shown in Section 3, whereby the
two available methods are used as benchmarks for the performance
evaluation.

2.1. Intuitive forecast — the seasonal naïve method

The sun follows approximately the same apparent path in the sky
every day as the day before and approximately the same amount of heat
will be generated at the same time every day, provided that the weather
has not significantly changed. Thus, this natural 24-h-periodicity is
a reasonable starting point for developing any forecasting method to
determine solar yield. In a first approximation, one can predict the solar
heat production at a particular time of the day as being the same as the
production measured on the previous day at the same time
̂̇𝑄coll(𝑡) = 𝑄̇coll(𝑡 − 24 h), (1)

with ̂̇𝑄coll being the forecast for the solar heat for a time 𝑡 in the future
and 𝑄̇coll(𝑡 − 24 h) being the measured value of the solar heat at the
same time on the previous day. This approach is known in literature
as the persistence model, e.g. [6], or the naïve seasonal prediction method,
e.g. [24], as it will be also called in this paper. This intuitive forecast
made by applying the seasonal naïve prediction method works well if
approximately the same conditions (and, in particular, similar amounts
of solar radiation and similar ambient temperature) are measured on
the subsequent day as on the previous one.

The advantages of this method are that it provides good results if
the climate conditions remain constant, requires no parameterization,
needs no external weather informations and adapts to seasonal changes.
The method’s biggest disadvantage is that the results can be highly
incorrect if the conditions on the previous day are significantly differ-
ent from those on the next one, which can lead to large deviations,
especially on a short-term basis.

2.2. Static energy balance forecast — the data sheet method

While the seasonal naïve method can be considered as a black
box method, it can make sense to take the physical behaviour of flat-
plate collector systems into account for forecasting the solar yield. For
this reason, the operating principle for solar heat production in these
systems should be briefly reviewed before this principle is applied for
forecasting purposes: The energy flows for a flat-plate collector are the
heat input from the sun 𝑄̇in, the optical losses through reflection 𝑄̇re,
the ambient heat losses through heat conduction and convection 𝑄̇l,cc
and the heat losses through radiation 𝑄̇l,r . Consideration of these flows
leads to the following energy balance equation:

𝑄̇coll(𝑡) = 𝑄̇in(𝑡) − 𝑄̇re(𝑡) − 𝑄̇l,cc(𝑡) − 𝑄̇l,r (𝑡). (2)

These energy flows are shown in Fig. 1. The heat produced by a
flat-plate collector 𝑄̇coll during steady-state operating conditions can be
approximately expressed by the static energy equation according to the
European Standard EN 12975-2; section 6.1, e.g. [25]:

𝑄̇coll(𝑡) = 𝐴coll𝐾(𝜃)𝜂0𝐼g(𝑡) − 𝐴coll𝑐1
(

𝑇̄f l(𝑡) − 𝑇amb(𝑡)
)

(3)

− 𝐴coll𝑐2
(

𝑇̄f l(𝑡) − 𝑇amb(𝑡)
)2 ,
3

Fig. 1. Schematic structure of a flat-plate collector and the energy flows 𝑄̇ that occur:
the heat input from the sun 𝑄̇in, the optical losses through reflection 𝑄̇re, the ambient
heat losses through heat conduction and convection 𝑄̇l,cc the heat losses through
radiation 𝑄̇l,r and the heat produced by the flat-plate collector 𝑄̇coll.

where 𝐴coll denotes the net collector area, 𝐼g the global radiation
received by the collector surface, 𝑇̄f l the arithmetic mean fluid tem-
perature between the inlet and the outlet of the collector and 𝑇amb the
ambient temperature. The coefficients represent the optical efficiency
𝜂0, and, the heat loss coefficients for heat conductance, 𝑐1, as well as
for thermal radiation, 𝑐2. The function 𝐾(𝜃) represents the incident
angle modifier (IAM) which describes the dependency of the optical
efficiency 𝜂0 on the angle of incidence 𝜃 of the global solar radiation 𝐼g.
This angle varies from collector to collector and is typically estimated
by performing experiments [26] and given in the data sheet.

In order to use Eq. (3) to forecast the solar yield ̂̇𝑄coll(𝑡) for a time 𝑡
in the future, forecasts for the following variables are necessary: ̂̄𝑇f l, 𝐼g
and 𝑇̂amb, which have to be estimated ( ̂̄𝑇f l) or obtained from a weather
service provider (𝐼g, 𝑇̂amb).

In conclusion, the advantages of using the static energy balance
of the collector as forecasting method for the solar yield are that
this method considers the physical behaviour of the system, can be
parameterized by the data sheet and can take into account the forecasts
for external factors (e.g. 𝑇̂amb) provided by a weather service provider.
The disadvantages of the method are that even though the Standard
EN12975:2006 is accepted and widely used, the results of analysing
measurement data from solar thermal plants shows that applying this
model, with its parameters (𝐴coll, 𝜂0, 𝑐1, 𝑐2) taken from the data sheet of
the collector, does not always lead to satisfying results for forecasting
the solar heat production even if the external factors 𝐼𝑔 , 𝑇amb and
operating conditions 𝑇̄f l are known by measurements. This is also
confirmed by the experimental validation presented in Section 3. This
has two important reasons:

1. The influence of the external factors (𝐼g, 𝑇amb) determined by
the coefficients (𝐴coll, 𝜂0, 𝑐1, 𝑐2) would have to change over the
day in order to consider the conditions occurring during daily
operation, e.g. the thermal inertia, since some solar energy is
needed to heat up the thermal masses of the collector in the
morning, resulting in a lower solar heat production. Further-
more, systematic shading might be also relevant at some times
of the day.

2. The model parameters (𝜂0, 𝑐1, 𝑐2, 𝐴coll) would not only have to
change over the day but also over the entire time of operation
to account for real world circumstances, such as dirty collector
surfaces, which decrease the optical efficiency (given by 𝜂0); ma-
terial ageing, which leads to higher heat losses of the collectors
(given by 𝑐1 and 𝑐2); and seasonally dependent local shading,
which reduces the effective collector area (given by 𝐴coll).

This means that neither the naïve nor the data sheet method yields
fully satisfying results, and each of them has its shortcomings. For this
reason, the new adaptive method presented here was developed to com-
bine the advantages of both methods (naïve: adaptive, no parameteriza-
tion effort, consideration of the past; data sheet: physically motivated,
consideration of future weather information) and to eliminate their
disadvantages.
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2.3. New adaptive forecasting method

In order to combine the advantages of both methods and eliminate
their disadvantages the new forecasting should

• be based on a physical model in order to be easily understandable,
• consider external factors (e.g. 𝐼g, 𝑇amb) as these can be nowadays

obtained easily and accurately from weather service providers,
• behave potentially differently over the day in order to take into

account short-term effects, such as thermal inertia or local shad-
ing,

• adapt its behaviour automatically over the years of operation
by learning from the past without the need for any manual
interventions and

• react quickly if a deviation occurs between the forecast and the
measured variable.

To meet all these requirements, the static energy equation (3) is
adapted in Section 2.3.1 such that it is more suitable for forecasting the
solar yield by using external factors, while still taking into account the
time dependent behaviour. Then, in Section 2.3.2, a parameterization
routine is described that allows the method to automatically adapt its
parameters based on past measurements. Finally, in Section 2.3.3 a
correction approach is introduced that allows the method to quickly
react by taking the latest error into account.

2.3.1. Prediction by considering external factors
As stated earlier, accurate forecasts from external factors (𝐼g and

̂amb) can easily be obtained from weather service providers. This is
ot the case for forecasts of the mean fluid temperature ̂̄𝑇f l, which
epends on the application and its operation. However, since solar
hermal collectors are typically operated with a constant desired outlet
emperature that is more or less ensured by the use of a temperature
ontroller, the outlet temperature of the solar collector can be assumed
o be relatively constant. Furthermore, since the solar collectors of
arge-scale solar thermal plants are typically connected to the lowest
art of a buffer storage, the inlet temperature can be assumed to be
onstant as long as the buffer is of a reasonable size and not inefficiently
perated. And even though the inlet and desired outlet temperature
ay change over the year, one can usually assume that it will remain

onstant for over the next 24 h, which corresponds to a typical forecast
orizon. By making these two simplifications, a constant in- and outlet
emperature can be assumed for forecasting, leading to a constant
ean fluid temperature ̂̄𝑇f l(𝑡) = ̂̄𝑇f l = const. Introducing the variable

emperature difference 𝛥𝑇̂ (𝑡) as

𝑇̂ (𝑡) = ̂̄𝑇f l − 𝑇̂amb(𝑡) , (4)

q. (3) becomes
̂̇
coll(𝑡) = 𝐴coll𝐾(𝜃)𝜂0𝐼g(𝑡) − 𝐴coll𝑐1𝛥𝑇̂ (𝑡)

− 𝐴coll𝑐2𝛥𝑇̂ (𝑡)2. (5)

urthermore, since the application in EMS only requires predictions
o be made at discrete time steps, it is reasonable to discretize (5) by
ntroducing a sampling time 𝛥𝑡. The sampling time is chosen as 𝛥𝑡 = 1 h,

since weather service providers typically provide their predictions for
external factors, global radiation and ambient temperature for every
full hour, e.g. [27]. Therefore, this yields to
̂̇𝑄coll[𝑘] = 𝐴coll𝐾(𝜃)𝜂0𝐼g[𝑘] − 𝐴coll𝑐1𝛥𝑇̂ [𝑘]

− 𝐴coll𝑐2𝛥𝑇̂ [𝑘]2 (6)

or the discrete time values 𝑘 = 𝑛+ 1,… , 𝑛+𝑁𝑓 with the discrete time
ariable 𝑛 = 𝑡∕𝛥𝑡 describing the hour at which the prediction is carried
ut and with 𝑁𝑓 denoting the number of future hours for which the
olar yield ̂̇𝑄 should be forecast.
4

coll t
As mentioned in Section 2.2, the coefficients (𝐴coll, 𝜂0, 𝑐1, 𝑐2) which
weight the influence of the external factors, can change over the day
for many reasons (e.g., thermal inertia, local shading). In order to
model this time-dependent behaviour, different coefficients are used
for different (discrete) times of the day. Furthermore to reduce the
number of parameters to a minimum, the coefficients are combined to
form the following model parameters: 𝛽1 = 𝐴coll 𝐾(𝜃) 𝜂0, 𝛽2 = 𝐴coll 𝑐1 and
3 = 𝐴coll 𝑐2, leading to
̂̇
coll[𝑘] = 𝛽1[𝑘]𝐼g[𝑘] − 𝛽2[𝑘]𝛥𝑇̂ [𝑘] − 𝛽3[𝑘]𝛥𝑇̂ [𝑘]2, (7)

here the dependency of 𝛽1 on 𝐾(𝜃) is implicitly considered since
1 changes over the day as the position of the sun changes, causing
ifferent angles of incidence 𝐾(𝜃). This approach also allows to consider
he switch-off times caused by the underlying low-level control system
y simply setting the parameter sets for a time 𝑗 to zero: 𝛽1[𝑗] = 𝛽2[𝑗] =
3[𝑗] = 0.

Considering the natural 24-h-periodicity as for the naïve method
escribed in Section 2.1, it can be assumed that the model parameter 𝛽𝑗
eighting the influence of the external factors at each time of the day
ill only slightly change from day to day, while the external factors

an vary greatly. Therefore, Eq. (7) can be rewritten as
̂̇
coll[𝑘] = 𝛽1[𝑚]𝐼g[𝑘] − 𝛽2[𝑚]𝛥𝑇̂ [𝑘] − 𝛽3[𝑚]𝛥𝑇̂ [𝑘]2 , (8)

ith the individual times of the day 𝑚 = 𝑘 mod 24 (for a sampling
ime of 𝛥𝑡 = 1 h). After dividing the model parameters 𝛽𝑗 into different
arameter sets 𝛽𝑗 [𝑚], which are valid for a certain hour of the day 𝑚,
hese have to be determined from historical data. However, in order
o always use the latest information and adapt to seasonal changes
he model parameters should be continuously re-determined on-line at
very hour 𝑛. Thus the sets of model parameters should change over
ime, leading to:
̂̇
coll[𝑘] = 𝛽1[𝑚|𝑛]𝐼g[𝑘] − 𝛽2[𝑚|𝑛]𝛥𝑇̂ [𝑘] − 𝛽3[𝑚|𝑛]𝛥𝑇̂ [𝑘]2. (9)

inally, since the forecasts of the external factors 𝐼g, 𝑇̂amb (and therefore
𝑇̂ ) will also typically be continuously updated at every hour 𝑛 by the
eather service provider in a practical implementation, it is reasonable

o always use the most recent information. This leads to the prediction
̂̇
coll for the next 𝑁f time steps at the hour 𝑛 by
̂̇
coll[𝑘|𝑛] = 𝛽1[𝑚|𝑛]𝐼g[𝑘|𝑛] − 𝛽2[𝑚|𝑛]𝛥𝑇̂ [𝑘|𝑛]

− 𝛽3[𝑚|𝑛]𝛥𝑇̂ [𝑘|𝑛]2. (10)

In summary, the application of the new adaptive forecasting method
esults in 24 so called multiple linear regression models and considers
orecasts of the global radiation and the ambient temperature as ex-
ernal factors. In principle, it could be possible to consider even more
xternal factors, such as wind speed or wind direction. However, these
ariables have comparatively little influence and are rarely measured
t real plants. Furthermore, using more inputs would also increase the
omplexity, require more memory storage and make the application
f the method more expensive, since each individual weather forecast
uantity must be typically paid for. In addition, in case the collectors
ould be mounted on a tracking system, the method could be used as
ell, but both the measured and predicted solar radiation 𝐼g, would
ave to be correctly converted to the tracking surface.

The method is equivalent to the static collector model and, there-
ore, is valid for use in a wide range of collectors. Instead of having
o rely solely on the parameters given in the data sheet, however, the
ollector parameters should be continuously adapted by measurement
ata in this approach, as is described in the next Section 2.3.2. The
ependency on the time of day is taken into account by using dif-
erent parameter sets for each time 𝑚 of the day and, in this case
very hour. This way, influencing factors as pollution of the col-
ector fields and material decay are automatically incorporated. The
ffects of local shading, which would have to be incorporated into

he static collector model by performing complicated 3D modelling
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and shadow calculations, e.g. [26], are also automatically included
and no manual parameterization is necessary. In addition, later en-
hancements, such as added solar collectors or changing environmental
conditions (e.g. newly built buildings that shade the collectors), are also
automatically incorporated into the forecasting process.

2.3.2. Continuous reparametrization
The continuous reparametrization is done by using historic measure-

ment data and considering the natural 24-h-periodicity. For this reason,
at every full hour 𝑛 the model parameters 𝛽 for that specific time of
the day, 𝑚 = 𝑛 mod 24, are re-determined, using historical data. These
historical data, referred to as training data in the following, consist of
measurement data for of the independent variables 𝑋, with the external
ariables 𝐼g as well as 𝛥𝑇 , which are calculated in this case with the
easured mean fluid temperature 𝑇̄f l, and the dependent variable 𝑌 ,

with the measured solar yield 𝑄̇coll for a certain number of training
days 𝑁d in the past. For example, in order to re-determine the set of
model parameters at time 𝑛, meaning 𝑚 = 𝑛, where 𝑛 is aligned with
the time of the clock, meaning that 𝑛 = 0 corresponds to 00:00:00 of
the first day considered, the following set of training data is used:

𝑋[𝑛] =
⎡

⎢

⎢

⎣

𝐼g[𝑛] 𝐼g[𝑛 − 1] … 𝐼g[𝑛 −𝑁d]
𝛥𝑇 [𝑛] 𝛥𝑇 [𝑛 − 1] … 𝛥𝑇 [𝑛 −𝑁d]
𝛥𝑇 [𝑛]2 𝛥𝑇 [𝑛 − 1]2 … 𝛥𝑇 [𝑛 −𝑁d]2

⎤

⎥

⎥

⎦

(11)

𝑌𝑌𝑌 [𝑛] =
[

𝑄̇coll[𝑛] 𝑄̇coll[𝑛 − 1] … 𝑄̇coll[𝑛 −𝑁d]
]⊤ . (12)

How to choose the optimal number of training days 𝑁d will be
iscussed in Section 3.3. However, in order to keep the method robust
y taking days with different characteristics for training, the typical
umber of training days is larger than the number of model parameters
𝑗 , leading to an overdetermined system of linear equations for the
odel parameters

[𝑛] =𝑋𝑋𝑋[𝑛]

𝛽𝛽𝛽[𝑛]
⏞⏞⏞
⎡

⎢

⎢

⎣

𝛽1[𝑛]
𝛽2[𝑛]
𝛽3[𝑛]

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑌𝑌𝑌 [𝑛]

+𝑒𝑒𝑒[𝑛] , (13)

ith 𝑒𝑒𝑒 as the residual vector describing the error between the true
alue 𝑌𝑌𝑌 [𝑛] and its estimation 𝑌𝑌𝑌 [𝑛]. This means that the set of model
arameters 𝛽𝛽𝛽 depends on the way the residual vector 𝑒𝑒𝑒 is minimized,
hich is indirectly defined by choosing a specific cost function 𝐽 . For

implicity, 𝐽 is chosen here as the sum of squared errors

=
∑

𝑖
𝑒2𝑖 , (14)

hich leads to an ordinary least squares problem (OLS) for the optimal
odel parameters 𝛽𝛽𝛽. The main advantage of this choice for 𝐽 is that

he OLS can be easily implemented by using the pseudo-inverse an,
herefore, it can also be deployed on standard programmable logic
ontrollers (PLCs). One disadvantage is that constraints cannot be
onsidered in the optimization step. This means that the determination
f the parameters can also yield to physically unreasonable values for
he model parameters 𝛽, e.g. ‘positive’ heat losses. In such a case, the
pecific value for 𝛽 is set to zero, and the calculation is performed
gain for the remaining model parameters. It has been shown that using
least squares optimization algorithm that can consider constraints,

ypically leads to better forecasting results, as exemplarity shown in
ection 3.4.1. However, since not every target platform offers the
ossibility to use such a solver, the pseudo-inverse was used, since this
s more generally applicable. Up until now, this forecasting method
nly uses measurement data from the last days, but does not take into
ccount more recent measurements, thus incorrectly assuming that one
ime step is independent from the next. This would mean that, for
xample, the prediction made for 12:00 of the following day could
5

e calculated on the current day at 12:00 (assuming a time step of
ne hour) and would not change afterwards. In order to reduce this
hortcoming, a correction step is introduced which will be described in
he next section.

.3.3. Correction based on latest prediction error
A correction should help to increase the accuracy of the subsequent

orecast of the near future by making use of the latest prediction error.
uch a prediction error can occur for many reasons, one important
eason being local temporary shading by clouds. Systematic effects may
lso occur: If it has rained over night, this may have increased the
ptical efficiency of the collector as compared to the efficiency on the
revious days.

Such a prediction error is likely to persist over a certain time and
etailed investigations of the prediction model with measurement data
rom solar heat producers have shown that the sign of the prediction
rror (𝑄̇coll − ̂̇𝑄coll) tends to stay the same over several time steps.
hus the last prediction error (𝑄̇coll[𝑛] − ̂̇𝑄coll[𝑛|𝑛− 1]) from the current
ime step 𝑛 can be used to improve the prediction for the following
ime step ̂̇𝑄coll[𝑘|𝑛], with 𝑘 > 𝑛. Since the sign of the prediction error
ypically stays the same only over a few time steps, the correction is
imited to the near future. In order to keep the method simple, a scaled
inearly decaying function 𝛷[𝑘] is used which adds the weighted current
rediction error (𝑄̇coll[𝑛]− ̂̇𝑄coll[𝑛|𝑛−1]) to the following few time steps,
orrecting the prediction. The correction can therefore be written as

̃̇
coll[𝑘|𝑛] = ̂̇𝑄coll[𝑘|𝑛] + (𝑄̇coll[𝑛] − ̂̇𝑄coll[𝑛|𝑛 − 1])𝛷[𝑘|𝑛] , (15)

ith 𝛷 as linearly decaying correction function

[𝑘|𝑛] =

⎧

⎪

⎨

⎪

⎩

𝑐c

(

1 − 𝑘 − 𝑛 − 1
𝑁c − 1

)

if 𝑛 + 1 ≤ 𝑘 ≤ 𝑛 +𝑁c,

0 otherwise.
(16)

With the correction gain 𝑐c ∈ [0, 1] and the discrete time correction
horizon given by 𝑁c ∈ {2, … , 𝑁f}.

While the correction (15) makes sense in general, it can also be
the source of problems. For example can the solar yield exhibit an
oscillating behaviour on an unsettled day (which of course also depends
on the performance of the low-level control strategy of the plant). In
such cases the assumption of the prediction error having the same
sign for several time steps is violated, and consequently, the correction
can actually worsen the prediction. This should be taken into account
and evaluated when the method is applied in a specific application.
However, for the measurement data described in 3.1, the sign of the
prediction error is more likely to persist over a certain time. Thus,
the correction on average improves the prediction, as will be shown
in Section 3. The whole new adaptive forecasting method is illustrated
in the flowchart shown in Fig. 2 for a sampling time of one hour.

3. Experimental validation

The adaptive forecasting method introduced in Section 2.3 should
now be experimentally validated with real measurement data for sev-
eral settings of flat-plate collector installations in order to evaluate its
wide applicability. These settings together with the information regard-
ing the installed measurement equipment are described in the first part
of Section 3.1. Then in Section 3.2 measures used for the evaluation
are chosen, and it is discussed why these are suitable for the purpose of
evaluating the performance of the method. Furthermore, in Section 3.3,
the few parameters needed to apply the adaptive forecasting method
are determined. Finally, the validation results for different collector
settings are shown in Section 3.4, considering different time ranges, the
comparison to other forecasting methods and the use of real weather

forecast data as inputs.
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Fig. 2. Flowchart of the new adaptive forecasting method for predicting the solar
energy yield.

3.1. Plant settings and measurements

3.1.1. Plant settings
The performance of the method is investigated for different flat-

plate collector plants regarding several important aspects: application
(hot water and process heat), size (from 200m2 to 3500m2), orientation
(south, south-west, south east, ‘mixed’) and climate conditions (Austria
and Kuwait) in order to demonstrate the wide applicability of the
method. Regarding the climate conditions two strongly different but
representative countries have been chosen: Austria with a medium to
high solar radiation level and Kuwait with a high solar radiation. These
collector systems with their different characteristics are summarized
in Table 1, ordered by their nominal solar heat production. All fields
in Austria are tilted by 45◦, and the field in Kuwait by 15◦; further-

ore, their orientation from the south is given as value in the column
rientation described by the surface azimuth angle 𝛾, see e.g. [26],

with zero for south, east negative, and west positive. The hot water
applications have a desired outlet temperature of 80 ◦C and the process
heat application of 160 ◦C.

For each field the solar yield is calculated by

̇ SH = 𝑚̇ 𝑐p(𝑥, 𝑇̄ ) (𝑇in − 𝑇out ) , (17)

ith the mass flow 𝑚̇, the specific heat capacity of the fluid running
hrough the collector 𝑐p, which depends on the mass fraction of an-
ifreeze medium 𝑥 (for pure water 𝑥 = 0) and the mean temperature
6

i

̄ between the temperature entering 𝑇in and leaving the collector field
out . The mass flow 𝑚̇ itself is calculated by

̇ = 𝑉̇ 𝜌(𝑥, 𝑇 ) , (18)

ith the measured volume flow 𝑉̇ and the density of the heat carrier
, depending on the mass fraction of glycol 𝑥 and the temperature
easured near the volume flow sensor 𝑇 . The plant in Kuwait is

perated with water as a heat carrier, while the plants in Austria are
perated with an antifreeze mixture of 𝑥 = 35% of the antifreeze

medium Tyfocor L [28]. The values of heat capacity and density for
the antifreeze mixture were taken from the data sheet and linearly
interpolated for different temperature levels.

3.1.2. Measurements
The global solar radiation 𝐼g on the tilted flat-plate collector sur-

faces was measured at all plants by using a pyranometer. In the
plants in Austria, a Kipp&Zonen SMP6 [29] was used, and a MTX
PCTRA056 [30] was used in Kuwait. Both are first class pyranometers,
according to the classification in ISO 9060:1990 with an uncertainty of
< ±1% and < ±1.5% respectively, regarding their long-term instability.
The flow was measured in the Austrian plants with magnetic inductive
flow sensors Optiflux400 from Krohne [31], which have an uncertainty
of ±0.2% in the relevant operating range, and in the plant Kuwait plant
with a vortex flow meter digital YEWFLO from Yokogawa [32] with
an uncertainty of ±0.75%. All temperatures were measured at each site
using PT100 temperature sensors of class B, with regard to IEC 751/EN
60751, with an uncertainty of ±(0.30 + 0.00500K). The dataset for the
evaluation covers half a year of operation in order to deliver profound
insights. For the plants in Austria the measurements were taken from
the beginning of July until the end of December 2018 and for the plant
in Kuwait the data were taken from the beginning of September until
the end of February 2019. The measurement data from the plants in
Austria were recorded at a 1 s intervals and at a 6min interval in Kuwait.
The data from both sites were downsampled to an interval of 1 h to
apply the method by calculating the mean for each measurement over
hourly time bins.

3.2. Measures for validation

Since the adaptive solar forecasting method should be evaluated and
compared for different solar heat producers having different nominal
heat production rates, a scale-free measure is preferable for validation.
The group of scale-free measures can be further split into measures
based on percentage errors and measures based on the comparison of
different methods (relative measures), which should both be further
discussed starting with the percentage error.

Percentage errors are advantageous because they can be easily
interpreted. However, the most commonly used percentage error, the
Mean Absolute Percentage Error (MAPE), is unsuitable since it scales
the forecast error based on the measured value, which can result in
an infinite value if the solar heat production tends to zero. For this
reason, other contributions in literature, e.g. [22,33,34], propose using
the Mean Absolute Range Normalized Error (MARNE):

MARNE = MAE
𝑦max

=
1
𝑁f

∑𝑁f
𝑖=1 |𝑦𝑖 − 𝑦̂𝑖|

𝑦max
, (19)

i.e. the Mean Absolute Error (MAE) divided by the maximum value
𝑦max of the variable to be forecast and 𝑁f as the number of prediction
values, whereby the nominal solar heat production of the plant can be
used for the maximum value 𝑦max. Since the MARNE is easy to interpret
and cannot lead to infinite values, it is used to evaluate the forecasting
method.

As a complement to that, the comparison to other (benchmark)
methods is also illuminating. Relative measures are best suited to this
purpose. In order to evaluate the superiority of the new method (New),
t is compared to the seasonal naïve method (SN, Section 2.1) and the
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Table 1
Table of the different solar collector systems investigated with their application, net collector area, orientation, nominal solar heat production and location.
Abbreviation Application Net collector area Orientation Nom. heat production Location

SFPH,S,S Process heat 215m2 SE (𝛾 = −5◦) 150 kW Kuwait
SFHW,S,SW Hot water 286m2 SW (𝛾 = 30◦) 172 kW Austria
SFHW,M,SE Hot water 782m2 SE (𝛾 = −15◦) 469 kW Austria
SFHW,L,S Hot water 2464m2 S (𝛾 = 0◦) 1478 kW Austria
SFHW,XL,mix Hot water 3532m2 Mixed (–) 2119 kW Austria
data sheet method (DS, Section 2.2). For this purpose the relative MAE
s introduced
MARNENew
MARNE𝑗

=
MARNENew∕𝑦max
MARNE𝑗∕𝑦max

=
MAENew
MAE𝑗

= RelMAE𝑗 , (20)

with 𝑗 ∈ {SN,DS}. For example, in case the RelMAESN is greater than
ne, the naïve method performs better than the proposed one, and vice
ersa for a value smaller than one. All measures (MARNE, RelMAESN
nd RelMAEDN) are only evaluated for the hours between sunrise and
unset, since considering the whole day would erroneously lead to a
ower error estimation. Before these measures are used for evaluation,
he few parameters of the new method have to be determined.

.3. Parameter determination

.3.1. Forecast horizon 𝑁f
The forecasting method should be used for EMS of large-scale

olar thermal plants, repeatedly scheduling the production, storage and
istribution of heat for the near future. This is typically done for a
eriod of 24 h since the buffer storages of these plants are designed
o store the energy of one perfectly sunny day; therefore, the forecast
orizon is set to 𝑁f = 24 h.

.3.2. Forecast of mean fluid temperature ̂̄𝑇f l
As described in Section 2.3, the forecast of the mean fluid tempera-

ure ̂̄𝑇f l has to be set to a reasonable constant value to apply the method
or forecasting the solar energy yield. It should be mentioned that it
ould be also possible to use a future course for ̂̄𝑇f l or continuously
djust this will based on the planned operation to even increase the
orecasting accuracy; however, a constant value already typically leads
o good results and makes the method simpler to apply. This mean fluid
emperature acts then as an offset on the predicted ambient tempera-
ure, influences the heat losses from the collector to the ambient and
an be calculated from the operating conditions occurring at a plant.
his was done separately for the two different applications considered,
rocess heat and hot water, since they differ significantly regarding
heir temperature levels, resulting in two mean fluid temperatures:
̂̄
f l,PH for the process heat application and ̂̄𝑇f l,HW for the hot water
pplications. For the process heat application this value was calculated
y taking the average of the arithmetic mean temperature between
he inlet and outlet over the whole measurement range when the
lant (SFPH,S,S) was in operation (the primary pump was switched on),
esulting in ̂̄𝑇f l,PH = 125 ◦C. For the hot water applications, a mean
emperature for each plant (SFHW,S,S, SFHW,M,SE, SFHW,L,S, SFHW,XL,mix)
as first calculated as in the process heat case. In a next step, these
alues were averaged to obtain one value for the hot water applications,
esulting in ̂̄𝑇f l,HW = 73 ◦C in order to keep the number of parameters
s small as possible.

.3.3. Number of training days 𝑁d
In contrast to the mean fluid temperature the optimal number of

raining days should be determined by applying the forecasting method
eparately to all solar heat producers from Table 1 to evaluate whether
ize and orientation have an impact on the number of training days 𝑁d.
ince the number of training days 𝑁d only affects the prediction step
f the method, the correction step (Section 2.3.3) could be neglected in
his evaluation. In order to determine the optimal number of trainings
7

ays 𝑁d the following procedure is carried out for each solar heat
Fig. 3. Values of the Mean Absolute Range Normalized Error (MARNE) for different
numbers of training days for an average sized heat producer SFHW,M,SE.

producer and each number of training days 𝑁d, varying from 1 to 35
training days, whereby the forecast is calculated and evaluated hourly,
including these 4 steps:

1. Updating the training data from the last 𝑁d days of (mea-
sured) historical data, consisting of the solar yield, the mean
fluid temperature, the global solar radiation and the ambient
temperature.

2. Redetermining the model parameters 𝛽 of the prediction model
for the last hour.

3. Forecasting the solar heat production for a forecast horizon of
24 h, 𝑁f = 24 by using the measured global radiation and
ambient temperature for the next 24 h.

4. Evaluating the forecast via the MARNE

These steps are repeated hourly, resulting in hourly updated forecasts
for the solar heat production, each of which are valid for a forecasting
horizon of 24 h and can be evaluated by the MARNE. Finally, the mean
of these hourly calculated MARNEs is determined for each solar heat
producer to find the optimal number of training days 𝑁d.

The influence of different number of training days on the MARNE is
shown exemplarily in Fig. 3, for a medium sized hot water solar plant
SFHW,M,SE. It can be seen that the MARNE increases at the beginning
before falling rapidly. This means that using only one day for training
(which is comparable to the naïve method) would perform better than
using two or three training days, where similar was also observed for
the other heat producers. Nevertheless, it can be also seen that the
MARNE strongly decreases by about 40% when considering one week
of training data as compared to only taking the day before for training.
This shows that the training data for parameterization have a large
impact on the forecasting accuracy. However, after a certain number
of training days the value of the MARNE increases again, leading to
the conclusion that the method cannot adapt itself appropriately if the

training dataset is too large, making its performance worse. In Fig. 3,
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Table 2
Optimal number of training days 𝑁d for each heat producer based on the evaluation
y the Mean Absolute Range Normalized Error (MARNE).
Abbreviation Opt. number of training days 𝑁d

SFPH,S,S 20 d
SFHW,S,SW 20 d
SFHW,M,SE 18 d
SFHW,L,S 18 d
SFHW,XL,mix 18 d

it can be further seen that the MARNE values show a minimum for 18
training days, even if the curve is rather flat around this value. This was
also observed for the other heat producers, i.e., that the MARNE values
are rather similar around their minimum, with the optimal number of
training days for each producer given in Table 2.

It can be concluded that, even for different climates and collector
sizes, the data from the last two to three weeks should be considered.
Taking fewer or more training data typically worsens the prediction.
For the subsequent evaluation, the mean value over the optimal number
of trainings days was chosen, leading to 𝑁d = 19.

3.3.4. Correction gain 𝑐c and correction horizon 𝑁c
The correction uses the latest information for the forecast error to

orrect the following hours, which would otherwise only be considered
4 h later. The impact of the correction depends on the correction gain
c, and how many forecast values are affected depends on the correction
orizon 𝑁c. As in the determination of the optimal number of training
ays 𝑁𝑡 the optimal correction parameters (𝑐c, 𝑁c) should be deter-

mined by applying the forecasting method to all solar heat producers
listed in Table 1, but the correction step should be considered in the
evaluation this time as well. Therefore all the parameters previously
determined are used while varying the dimensionless correction gain 𝑐c
from 0 to 0.7 with a step size of 0.1 and varying the correction horizon
𝑁c from 1 to 12 h. For each heat producer and each combination of 𝑐c
and 𝑁c the forecasts have been calculated and evaluated hourly includ-
ing the first three steps as described in Section 3.3.3 but additionally
applying:

4. A correction for the prediction for a correction horizon of 𝑁c
hours by using a linearly decaying function starting from the
current prediction error, and weighting it by the correction gain
𝑐c.

5. Evaluating the forecast via the MARNE.

These steps are repeated hourly, resulting in hourly updated and cor-
rected forecasts for the next 24 h for the solar energy yield. To de-
termine the optimal training days, the accuracy of these forecasts is
evaluated by calculating the MARNE for each forecast, yielding to
hourly MARNEs. The minimum of the mean hourly MARNEs then
determines the optimal values for 𝑐c and 𝑁c. Fig. 4 exemplarily shows
the MARNE over the correction horizon 𝑁c for different correction
factors 𝑐c for an average sized hot water heat producer SFHW,M,SE. This
figure shows that the value of the MARNE decreases as the correction
gain 𝑐c increases and that the correction horizon 𝑁c reaches a certain
point, where it increases again. In comparison to the determination
of the optimal number of training days, the selection of the optimal
correction parameters has little influence. However, on an overall
scale, the correction leads to an improvement. Furthermore, it can be
assumed that the influence of the correction is more important when
applying real weather forecasts with higher error rates.

As in the determination of the optimal number of training days,
it can be seen in Table 3 that the correction horizon 𝑁c as well as
the correction gain 𝑐c are very similar for all heat producers, and no
obvious correlation regarding the size of the heat producers can be
8

detected. However, what can be seen in Fig. 4 and what was also o
Fig. 4. Values of the Mean Absolute Range Normalized Error (MARNE) for different
values of the correction gain 𝑐c and the correction horizon 𝑁c for an average sized
heat producer SFHW,M,SE.

Table 3
Optimal value of the correction gain 𝑐c and the correction horizon 𝑁c for each solar
heat producer based on the evaluation by the Mean Absolute Range Normalized Error
(MARNE).

Abbreviation Opt.corr. gain 𝑐c Opt. corr. horizon 𝑁c

SFPH,S,S 0.40 3 h
SFHW,S,SW 0.35 6 h
SFHW,M,SE 0.30 4 h
SFHW,L,S 0.45 5 h
SFHW,XL,mix 0.45 5 h

experienced for the other fields is that in case the correction gain is
large the correction horizon should be small and vice versa.

In conclusion, the mean value over all values of the correction gain
and the correction horizon are used for the subsequent evaluation of
the method, resulting in 𝑐c = 0.39 and 𝑁c = 5 h.

3.4. Validation results

After the parameters have been determined the performance of the
new adaptive forecasting method should be comprehensively validated
with measurement data, considering five important aspects:

1. superiority over other forecasting methods – by comparing it to two
methods often used in literature: the seasonal naïve and the data
sheet method.

2. short-term performance – by evaluating the performance for a
representative week.

3. long-term performance – by evaluating the performance for six
months of measurement data.

4. wide applicability – by applying it to a large-variety of different
solar plants with different characteristics regarding application,
size, orientation and climate conditions.

5. real world applicability – by using forecasts from a commer-
cially available weather service provider to give insights into the
performance of the method in practice.

o do so the section is split into three parts: First, in Section 3.4.1,
short-term evaluation is carried out for a representative week to

valuate the effects of changing ambient conditions, addressing aspects
and 2. Second, in Section 3.4.2, a long-term evaluation of the whole

et of measurement data is carried out for all producers, assuming
erfect weather forecasts (= measurements) and, addressing the aspects
, 3 and 4. Third, in Section 3.4.3, the long-term evaluation is carried
ut again, this time using real weather forecasts from a commercially
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Fig. 5. Evaluation of the new forecasting method for a demanding week in July of a medium sized heat producer SFHW,M,SE in Austria, see Table 1. The upper graph shows the
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easured global radiation 𝐼g and the measured ambient temperature 𝑇amb.
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Fig. 6. Model parameters 𝛽1 , 𝛽2 , 𝛽3 for each hour of the method at the start of a
emanding week in July in comparison to their values at the end of the week changed
y the automatic adaptation of the method.

eather service provider and additionally addressing aspect 5. Further-
ore, in each section a comparison is made among the benchmark
ethods, the seasonal naïve and the data sheet method.

.4.1. Short-term evaluation with perfect weather forecasts
In this section the forecast accuracy of the new method is evaluated

or a representative week using a medium sized producer SFHW,M,SE
isted in Table 1. Fig. 5 shows the measured solar heat production
n black and the forecast in colour in the upper graph, with the
olours indicating the hour of the day the respective forecast starts.
he forecasts are calculated and evaluated hourly in the same way, as
escribed in Section 3.3.4. In the lower graph, the measured values
f the solar radiation 𝐼g and the ambient temperature 𝑇amb are shown,
hich are used to forecast the solar yield. Additionally, Fig. 6 shows the
odel parameters of the method 𝛽1, 𝛽2, 𝛽3 for each hour at the start of

he week in comparison to the end of the week which are continuously
eparameterized, see Section 2.3.2.

From Fig. 5 it can be seen that for most of the days the proposed
orecasting method shows very good results, allowing the prediction of
he course of the produced solar heat with high accuracy, with only
mall deviations and also considering the right start and stop times of
he system.
9

t

Sometimes, the application of the correction approach can be seen,
or example on Tuesday: After the prediction shown at 14:00 in light
reen underestimates the prediction, the next predictions shown in
ellow at 15:00, therefore, corrects the course upwards. After the
econd peak it can be seen that the correction makes the prediction
ven worse for a short time (dark orange at 19:00). However, as already
iscussed in the previous Section 2.3.3, the influence of the correction
pproach improves the total result but may worsen it for some time
teps. From Fig. 6 it can be seen that the model parameters of some
ours adapt over the week. For example, have the parameters 𝛽1 and

𝛽2 for the hours of 10:00 to 12:00 slightly increased their values as it
is also the case for the parameter 𝛽3 at 10:00. However, besides that,
the parameters seem rather robust which has its origin in the relative
large number of training days.

The overall MARNE evaluated for this week results in a MARNE of
4.15% and the RelMAESN = 0.31 and RelMAEDS = 0.54. This means that
the method can be applied to forecast the solar heat production with a
mean average deviation of 4.15% of the nominal solar heat production,
and is more than three times as accurate as the naïve forecast as well
as nearly twice as accurate in comparison to the data sheet method.
As described in Section 2.3.2, the optimal model parameters 𝛽 are
determined by solving an OLS problem by using the pseudo-inverse.
When using an algorithm capable of solving the OLS problem while
considering constraints, the MARNE for this week could be reduced to
3.72%, improving the performance by about 25%. However, to keep the
method as general applicable as possible the pseudo-inverse was used
for the further evaluations.

In this section the previously mentioned aspects are addressed: 1.
superiority over other forecasting methods and 2. short-term performance
were investigated, in the next section also 3. long-term performance and
4. wide applicability.

.4.2. Long-term evaluation with perfect weather forecasts
After the short-term evaluation is made, the method is evaluated

egarding its long-term performance and considering six months of data
vailable. As in the short-term evaluation, this is done by considering
perfect weather forecast and, therefore, using measurements of the

lobal solar radiation and the ambient temperature as inputs in order
o evaluate the performance of the method itself independent of errors
ntroduced by forecasts from a weather service provider. The long-

erm evaluation is made for each setting listed in Table 1 to prove
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the wide-applicability and the results are compared to those of the two
benchmarking methods: the seasonal naiïve method (SN) and the data
sheet method (DS), to demonstrate the superiority of the new method.

The first graph in Fig. 7 shows the resulting MARNEs for the new
adaptive method (new) for each collector setting from Table 1 as well
as in the second and third graphs the MARNE of the seasonal naiv̈e
method (SN) and the data sheet method (DS), respectively. In each of
the graphs, a horizontal red dotted line illustrates the mean value of
the respective MARNE over all collector settings. It should be noted
that the MARNEs shown in Fig. 7 is for each heat producers the overall
mean MARNE for the six months of measurement data when applying
the forecast method at any hour of the year for predicting the solar
yield for the next 24 h. The interested reader should be referred to the
Appendix where the MARNE at each hour for forecasting the next 24 h
are shown for each heat producer.

The wide applicability in terms of application, size, orientation and
climate is given by comparing the MARNE in the first graph of Fig. 7
for each collector setting. It can be seen that size and orientation do
not have a large influence on the forecast accuracy of the proposed
method, resulting in similar MARNEs. A larger difference seems to exist
regarding the application and climate, since the forecast of the plant
SFPH,S,S, which is used for process heat in Kuwait, suffers from a larger
error. One reason for this can be that this plant has no large storage
installed, since the heat is typically directly used by a process, making
the usage of a constant mean absorber temperature a more critical
issue since any variations in temperature coming from the process
are not damped by a storage. The influence of climate is difficult to
assess separately. However, it can be assumed that in the dry, relatively
constant climate in Kuwait, it should be easier to make a forecast
than it is in Central Europe. This can be also seen in the results of
the seasonal naïve method which performs the best for SFPH,S,S. From
hese results one can deduce that the consecutive days are similar.
he opposite is true for the forecast using the data sheet parameters
lowest graph); here, it seems as though the smallest heat producers
FHW,S,SW can be forecast more poorly, while larger fields for hot water
pplications in Central Europe can be forecast much better. Overall, the
wo benchmarking methods perform similarly having a mean MARNE
f about 7% to 10% while the proposed forecasting method has a
ARNE of about only 3%. This can even be more clearly shown by

omparing the forecasting methods regarding the RelMAE, resulting
n a RelMAESN = 0.38 and in a RelMAEDS = 0.28. This shows the
uperiority of the method, since the proposed method is more than
wo times more accurate than the seasonal naïve method and more
han three times more accurate than using the data sheet parameters.
n this section, the previously mentioned aspects were investigated: 1.
uperiority over other forecasting methods, 3. long-term performance and 4.
ide applicability and, in the last section, also 5. real world applicability

s addressed.

.4.3. Long-term evaluation with real weather forecasts
This long-term evaluation is done the same way as described in

ection 3.4.2, but this time taking ‘real’ weather forecasts from a
ommercial weather service provider [27] in order to investigate the
erformance of the method in practice. Unfortunately, no weather
orecast data for the region of Kuwait were available, so it is excluded
rom the evaluation. However, forecasting the weather conditions in
uch a dry region should be similar or even less challenging than
orecasting conditions in middle Europe, leading at least to comparable
esults. Fig. 8 shows again the MARNEs for the different methods using
real’ weather forecasts as inputs.Since the seasonal naïve method does
ot consider forecasts of external factors, the results are the same as
hose seen in the previous section (see Fig. 7). Again, the red-dotted
ine illustrates the mean MARNE over all collector configurations for
he specific method.

Regarding the wide applicability, the trend is the same as in the
10

ong-term evaluation using measurement data as forecasts but with a u
Fig. 7. Evaluation of the new adaptive method (New) for six months of measurement
data using perfect weather forecast as inputs for five different heat producers listed in
Table 1 in comparison to the seasonal naive method (SN) and the data sheet method
(DS).

Fig. 8. Evaluation of the new adaptive method (New) for six months of measurement
data using real weather forecast as inputs, for four different heat producers listed in
Table 1 in comparison to the seasonal naive method (SN) and the data sheet method
(DS).

higher error rate. This rate increases relatively from the largest to the
smallest field. Regarding the comparison between the performance of
the new adaptive method to the benchmark methods, this leads to a
RelMAE𝑆𝑁 = 0.59 for the seasonal naiv̈e method and to a RelMAE𝐷𝑆 =

0.42 for the data sheet method. This means that even if the results are
orse in comparison when taking real measurements the new method

s still nearly twice as accurate as the seasonal naiv̈e method and even
ore than twice as accurate as the data sheet method. In conclusion,

he new method can be used to forecast the solar yield for a large
ariety of collector settings under real conditions with an average
eviation of only 4.54%, which can be seen as very promising to be
sed for energy management systems (EMS).
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4. Conclusion and outlook

In this paper a new simple and adaptive forecasting method was
presented for predicting the solar yield of large-scale flat-plate collector
systems. In general, it combines the advantages of two commonly
used forecasting methods, the seasonal naïve method and the data
sheet method, to meet three important practical requirements: a simple
implementation, an automatic adaption and a wide applicability.

Regarding the simple implementation, the method is straightfor-
ward with respect to its mathematical structure; it uses only linear
models for each hour of the day, has just a few, easily tunable pa-
rameters and requires forecasts for only two external factors, the solar
radiation and the ambient temperature, as inputs.

Regarding the automatic adaption, the method adapts self-adapts
based on past measurement data by solving an overdetermined system
of equations using the pseudo-inverse. Even if the pseudo-inverse can
be easily implemented in any currently available controller, the inves-
tigations revealed that using a linear optimization algorithm capable of
considering constraints led to better results and should be preferred if
available.

Regarding the wide applicability, the investigations showed that
the new method provides highly accurate forecasts with a Mean Ab-
solute Range Normalized Error (MARNE) of about 5% when using real
weather forecasts as inputs, even when applied to a large variety of
flat-plate collector systems. Furthermore, it outperforms the two most
common forecasting methods, the seasonal naïve and the data sheet
method, yielding results that are nearly twice as accurate.

Overall, the simple, adaptive forecasting method presented in this
paper can be assumed to be highly suitable for use in energy manage-
ment systems (EMS), helping to improve the performance and more
efficiently integrate large-scale solar thermal plants into energy sys-
tems. The method allows to consider the expected solar yield in the
operation of the energy system, which can reduce unnecessary opera-
tions of other heating systems (e.g., gas boiler) and improve the storage
management in terms of the way in which the full solar yield can be
stored.

As an outlook, one idea for future improvements is to apply the
method to other collector technologies, for example evacuated tube
collectors which are very prominent in China [1] or even concentrating
collectors. While the former should be relatively easy, since evacuated
tube collectors also rely on the European Standard EN12975 [25], the
latter may require for a modification of the method to be made.
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Fig. A.9. Values of the Mean Absolute Range Normalized Error (MARNE) evaluated
at each hour of the measurement data for the heat producer SFPH,S,S listed in Table 1
for the new adaptive method (New) in comparison to the seasonal naiïve method (SN)
and the data sheet method (DS).

Fig. A.10. Values of the Mean Absolute Range Normalized Error (MARNE) evaluated
at each hour of the measurement data for the heat producer SFHW,S,SW listed in Table 1
for the new adaptive method (New) in comparison to the seasonal naiïve method (SN)
and the data sheet method (DS).
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Appendix. Hourly Mean Absolute Range Normalized Error
(MARNE) for each heat producer using perfect weather forecasts

The Figs. A.9–A.13 show the MARNE for predicting the solar yield
for the next 24 h evaluated at every hour of the measurement data
considered, for each heat producer given in Table 1 for the new
adaptive method (New) in comparison to the benchmarking methods,
the seasonal naiïve method (SN) and the data sheet method (DS).
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Fig. A.11. Values of the Mean Absolute Range Normalized Error (MARNE) evaluated
at each hour of the measurement data for the heat producer SFHW,M,SE listed in Table 1
or the new adaptive method (New) in comparison to the seasonal naiïve method (SN)
nd the data sheet method (DS).

Fig. A.12. Values of the Mean Absolute Range Normalized Error (MARNE) evaluated
at each hour of the measurement data for the heat producer SFHW,L,S listed in Table 1
for the new adaptive method (New) in comparison to the seasonal naiïve method (SN)
and the data sheet method (DS).

Fig. A.13. Values of the Mean Absolute Range Normalized Error (MARNE) evaluated
at each hour of the measurement data for the heat producer SFHW,XL,mix listed in Table 1
for the new adaptive method (New) in comparison to the seasonal naiïve method (SN)
and the data sheet method (DS).
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